Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
 
Search Article 
  
Advanced search 
  Users Online: 1179 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 
Table of Contents
BRIEF COMMUNICATION
Year : 2012  |  Volume : 16  |  Issue : 6  |  Page : 1015-1018

Metformin: Midlife maturity, maiden charm


1 Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, India
2 Department of Pharmacology, Post Graduate Institute of Medical Sciences, Rohtak, India
3 Department of Medicine and Medical Superintendent, JIPMER, Puducherry, India

Date of Web Publication31-Oct-2012

Correspondence Address:
Sanjay Kalra
Department of Endocrinology, Bharti Hospital and BRIDE, Karnal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-8210.103028

Rights and Permissions
   Abstract 

Metformin is one of the most commonly prescribed drugs for management of Type 2 diabetes mellitus. It has been in use for almost five decades. Now, pharmacological properties of this agent are being exapted for use in a number of other indications. New facets of its personality are coming up, generating more interest of the scientific community in this "middle-aged" molecule. This article explores the role of metformin in cardioprotection and its hepatoprotective properties. Nephroprotective, protection against excess body fat and gonadoprotective actions, properties have also been discussed. Additionally, this manuscript briefly reviews the thyroid stimulating hormone (TSH)-lowering properties in diabetic and non-diabetic patients, besides reviewing its actions on different types of cancers. Some of these actions may become approved indications for use of metformin following generation of new evidence. Metformin still has many unexplored dimensions that deserve further exploration.

Keywords: Biguanides, cancer, cardioprotection, diabetes, gonad, hepatoprotection, oral hypoglycemic drugs, renoprotection, thyroid


How to cite this article:
Kalra S, Dhamija P, Das AK. Metformin: Midlife maturity, maiden charm. Indian J Endocr Metab 2012;16:1015-8

How to cite this URL:
Kalra S, Dhamija P, Das AK. Metformin: Midlife maturity, maiden charm. Indian J Endocr Metab [serial online] 2012 [cited 2019 Nov 19];16:1015-8. Available from: http://www.ijem.in/text.asp?2012/16/6/1015/103028


   Introduction Top


Although metformin is perhaps the most widely prescribed oral antidiabetic drug worldwide, and was synthesized a century ago, newer aspects of its personality are still being discovered.

Apart from its glycemic effects in type 2 diabetes, for which it is approved, it is used in other forms of diabetes such as pre-diabetes, [1] type 1 diabetes [2] and gestational diabetes mellitus. [3] Its properties have also been put to use in other facets of metabolic syndrome, such as obesity, [4] non-alcoholic fatty liver disease (NAFLD) [5] and hyperlipidemia. [6] Also, it is used in other endocrine diseases like polycystic ovary syndrome (PCOS) [7] and hypothyroidism. [8] Non-endocrine indications, including anti-ageing, potential role in primary prevention of colonic cancer [9] and treatment of cancer, [10] complete the list.

No wonder then, that although metformin has achieved midlife maturity as a molecule, it cont\inues to exude maiden charm. The use of metformin in type 2 diabetes, both as monotherapy and in combination, is well researched and well documented. This review, therefore, will focus on the potential uses of metformin other than the prevention and management of diabetes.


   Cardioprotection Top


Various animal studies have demonstrated that metformin reduces infarct size in myocardial infarction. [11] This has been shown in both diabetic and non-diabetic rodents. This effect is partly mediated by AMP kinase (AMPK) activation, which increases phosphorylation of endothelial nitric oxide synthase (eNOS). It also prevents apoptosis of ventricular cardiomyocytes, activates AKT, one of the kinases of the reperfusion injuring salvage kinase (RISK) pathway, and stimulates the adenosine receptor. [11] Metformin also modulates post-infarct remodeling and prevents heart failure in the post-myocardial infarction setting. [11] Multiple mechanisms contribute to this beneficial effect, including a reduction in mitochondrial dysfunction in the failing myocardium, [12] reduction in collagen expression [13] and inhibition of transforming growth factor (TGF)-β1. [14] The drug has been shown to reduce apoptosis in cardiac allografts in animal models, both in the acute and in the chronic phases. Thus, it has potential for use as therapy to minimize acute and chronic rejection after cardiac transplantation. [15]


   Nephroprotection Top


Metformin has unfairly been targeted in the past as a renotoxic agent. In fact, it may have beneficial effects on the kidney. The risk of lactic acidosis associated with metformin use seems to have been exaggerated. It is suggested that metformin should be contraindicated in patients on dialysis [16] and with a glomerular filtration rate <30 mL/min. [17] In other patients with chronic kidney disease, metformin may have beneficial effects in glycemic control as well as long-term survival. [16] The drug may also be used in new-onset diabetes after renal transplantation. [16]


   Hepatoprotection Top


Metformin has important effects in the liver, where it reduces hepatic gluconeogenesis and benefits lipid metabolism. It improves insulin sensitivity and liver morphology, as assessed by ultrasonography and histology. These findings have been replicated in many, but not all, studies in adults. [5] In children, beneficial biochemical and metabolic effects have also been reported. [5]


   Adipoprotection Top


Metformin helps reduce body weight in both diabetic and non-diabetic patients, with beneficial effects on total body fat and visceral fat. [5] This is due to a reduced caloric intake because of suppression of appetite [18] and due to correction of hyperinsulinemia. [19] Metformin, therefore, can be used as an adjuvant to weight loss therapy.


   Gonadoprotection Top


Metformin is frequently used in the management of PCOS in women. This use is based on its anti-androgenic as well as insulin-sensitizing effects. The drug decreases production of testosterone from the ovaries and improves follicular growth within the ovaries. This occurs indirectly through reduction of hyperinsulinemia and directly through an increase in AMPK, coupled with a reduction in CMP 17 activity. These effects translate into clinical benefits in hirsutism, menstrual regularity and ovulation. [7],[20]


   Thyroprotection Top


Metformin has recently been shown to decrease TSH levels in subjects with hypothyroidism. [21],[22] It started as an incidental retrospective finding from cases of hypothyroidism that were prescribed metformin for diabetes and NAFLD. The finding was confirmed in retrospective and prospective [23] studies involving patients of diabetes with or without hypothyroidism. Now, it is a well-established fact that treatment with metformin reduces serum TSH levels. Although the mechanisms responsible for this finding still remain an enigma, a number of hypotheses have been proposed. One possible explanation is the sensitization of the cells in the anterior pituitary to the effects of thyroxine, augmenting the negative feedback effect. [23] The same mechanism can also lead to sensitization of peripheral tissues to the actions of thyroxine. The effect is proposed to be mediated through the actions of co-regulators, regulating the transcription of genes in response to binding of thyroid receptor complex to the nuclear DNA. [24] Interestingly, this effect is not seen in euthyroid patients but it is well developed in patients with abnormal pituitary-thyroid axis. Treatment with thyroxine replacement does not alter the response, while loss of this effect is seen when metformin is discontinued. [23],[25] This effect can be labeled as thyroprotective effect.

Antitumor effect

The association between reduced caloric intake and reduction in incidence of cancer is well established. [26] The generation of lactate in the absence of oxygen is seen in normal cells, while the same phenomenon is seen in cancer cells in the presence of oxygen also. This effect of aerobic glycolysis is called "Warburg Effect." [27] Metformin is known to act on some of the pathways of energy metabolism affected by caloric restriction and interfere with these processes in cancer cells with potentially beneficial outcomes.

Signals about reduction in incidence of cancer with use of metformin were generated in epidemiological studies in diabetic patients initially. [28],[29],[30] Later on, the role of metformin for primary prevention and treatment of tumors was explored in the general population also. Interestingly, the findings were not replicated in all patient groups. Specific sub-groups of patients could be identified who are not likely to respond to metformin therapy. [31]

A number of in vitro studies using cancer cell lines and a number of other models have tried to explore the underlying mechanisms. Although the exact mechanism of action in cancer cells still remains an enigma, a number of hypotheses have been proposed. Activation of AMPK and increased sensitivity to insulin [32] are proposed to be the important mechanisms responsible for these findings.

The carcinomas that are being proposed as potential targets of metformin therapy are breast, [31],[33],[34] colon, [35],[36] thyroid, [37],[38] pancreatic, [39],[40] prostate, [41] head and neck tumors, [42] lymphomas [43] and leukemias. [44] A number of studies using human breast cancer cell lines and implanted tumor cells in rodents have explored metformin alone or as add-on therapy [45] with existing anticancer agents. The results from these studies have shown that metformin is able to decrease the proliferation of tumor stem cells, [33] induce apoptosis in tumor cells [34] and increase the sensitivity of tumors to existing chemotherapeutic agents. [46] These findings were replicated in other tumor cell lines also. Clinical studies have been conducted to find the sub-group of patients who are likely to respond to the metformin, e.g. in patients with breast carcinoma, presence of estrogen receptor predicts responsiveness to metformin, [47] while one clinical study has found no effects of metformin therapy in triple receptor-negative breast carcinoma patients. [31] More scientific information will accumulate in the future about the potential role of metformin in many other cancers and sub-types of patients.

In a nut shell, metformin is a promising candidate for prevention and treatment of a variety of cancers because of its unique mechanism of action, because of which it can specifically target cancer cells.


   Conclusion Top


Even 50+ years after its initial use, metformin continues to be the first-line choice for management of type 2 diabetes mellitus. This testifies to its maturity as a "mid-life" molecule. Newer indications are also being discovered for this drug, ranging from glycemic and metabolic disorders to varied endocrine and non-endocrine conditions. This underscores the maiden charm that metformin continues to exert on students of medicine. The future will unfold many more mysterious actions of this unique molecule.

 
   References Top

1.Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care 2009;32:1583-8.  Back to cited text no. 1
    
2.Vella S, Buetow L, Royle P, Livingstone S, Petrie JR. Metformin in type 1 diabetes reduces insulin requirements without significantly improving glycaemic control. Reply to Schatz H [letter]. Diabetologia 2011;54:203-4.  Back to cited text no. 2
[PUBMED]    
3.Rowan JA, Hague WM, Gao W, Battin MR, Moore MP. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med 2008;358:2003-15.  Back to cited text no. 3
    
4.Pasquali R, GambineriA, Biscotti D, Vicennati V, Gagliardi L, Colitta D, et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 2000;85:2767-74.  Back to cited text no. 4
    
5.Mazza A, Fruci B, Garinis GA, Giuliano S, Malaguarnera R, Belfiore A.The role of metformin in the management of NAFLD. Exp Diabetes Res 2012;2012:716404.  Back to cited text no. 5
[PUBMED]    
6.Ghatak SB, Dhamecha PS, Bhadada SV, Panchal SJ.Investigation of the potential effects of metformin on atherothrombotic risk factors in hyperlipidemic rats. Eur J Pharmacol 2011;659:213-23.  Back to cited text no. 6
[PUBMED]    
7.Diamanti-KandarakisE.Polycystic ovarian syndrome: Pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med2008;10:e3.  Back to cited text no. 7
    
8.Krysiak R, Okopien B. Thyrotropin-lowering effect of metformin in a patient with resistance to thyroid hormone. Clin Endocrinol (Oxf) 2011;75:404-6.  Back to cited text no. 8
[PUBMED]    
9.Higurashi T, Takahashi H, EndoH, Hosono K, Yamada E, Ohkubo H, et al. Metformin efficacy and safety for colorectal polyps: A double-blind randomized controlled trial. BMC Cancer 2012;12:118.  Back to cited text no. 9
    
10.Bost F, SahraI B, Le Marchand-Brustel Y, Tanti JF. Metformin and cancer therapy. Curr Opin Oncol 2012;24:103-8.  Back to cited text no. 10
    
11.El Messaoudi S, Rongen GA, de Boer RA, Riksen P. The cardioprotective effects of metformin. Curr Opin Lipidol 2011;22:445-53.  Back to cited text no. 11
    
12.Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, JiS Y, Nunez D, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 2009;104:403-11.  Back to cited text no. 12
    
13.Yin M, van der HorstI C, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011;301:H459-68.  Back to cited text no. 13
    
14.Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 2010;87:504-13.  Back to cited text no. 14
[PUBMED]    
15.Chin JT, Troke JJ, Kimura N, Itoh S, Wang X, Palmer OP, et al. A novel cardioprotective agent in cardiac transplantation: Metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection. Yale J Biol Med 2011;84:423-32.  Back to cited text no. 15
[PUBMED]    
16.Pilmore HL. Review: Metformin: Potential benefits and use in chronic kidney disease. Nephrology (Carlton) 2010;15:412-8.  Back to cited text no. 16
[PUBMED]    
17.Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care 2011;34:1431-7.  Back to cited text no. 17
[PUBMED]    
18.Yki-Jarvinen H, Nikkila K, Makimattila S.Metformin prevents weight gain by reducing dietary intake during insulin therapy in patients with type 2 diabetes mellitus. Drugs1999;58 (Suppl 1):53-4; discussion 75-82.  Back to cited text no. 18
    
19.Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care 2003;26:977-80.  Back to cited text no. 19
[PUBMED]    
20.Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-SunyerX, et al. Prevention of diabetes in women with a history of gestational diabetes: Effects of metformin and lifestyle interventions. J Clin Endocrinol Metab 2008;93:4774-9.  Back to cited text no. 20
    
21.Vigersky RA, Filmore-Nassar A, Glass AR.Thyrotropin suppression by metformin. J Clin Endocrinol Metab 2006;91:225-7.  Back to cited text no. 21
[PUBMED]    
22.Isidro ML, Penin MA, Nemina R, Cordido F. Metformin duces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocrine 2007;32:79-82.  Back to cited text no. 22
    
23.Cappelli C, Rotondi M, Pirola I, Agosti B, Gandossi E, Valentini U, et al. TSH-lowering effect of metformin in type 2 diabetic patients: Differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009;32:1589-90.  Back to cited text no. 23
[PUBMED]    
24.Glass CK, Rosenfeld MG.The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121-41.  Back to cited text no. 24
[PUBMED]    
25.Cappelli C, Rotondi M, PirolaI, Agosti B, Formenti AM, Zarra E, et al. Thyrotropin Levels in Diabetic Patients on Metformin Treatment. Eur J Endocrinol 2012;167:261-5.  Back to cited text no. 25
    
26.Hursting SD, Lashinger LM, Colbert LH, Rogers CJ, Wheatley KW, Nunez NP, et al. Energy balance and carcinogenesis: Underlying pathways and targets for intervention. Curr Cancer Drug Targets 2007;7:484-91.  Back to cited text no. 26
[PUBMED]    
27.Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al. Targeting metabolism for cancer treatment and prevention: Metformin, an old drug with multi-faceted effects. Oncogene 2012. [In Press]  Back to cited text no. 27
    
28.Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330:1304-5.  Back to cited text no. 28
[PUBMED]    
29.Bowker SL, Yasui Y, Veugelers P, Johnson JA.Glucose-lowering agents and cancer mortality rates in type 2 diabetes: Assessing effects of time-varying exposure. Diabetologia 2010;53:1631-7.  Back to cited text no. 29
[PUBMED]    
30.Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care 2009;32:1620-5.  Back to cited text no. 30
[PUBMED]    
31.Bayraktar S, Hernadez-Aya LF, LeiX, Meric-Bernstam F, Litton JK, HsuL, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer 2012;118:1202-11.  Back to cited text no. 31
    
32.Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Martin-Castillo B, Menendez JA. Metformin and energy metabolism in breast cancer: From insulin physiology to tumour-initiating stem cells. Curr Mol Med 2010;10:674-91.  Back to cited text no. 32
    
33.Jung JW, Park SB, Lee SJ, Seo MS, Trosko JE, Kang KS. Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS One 2011;6:e28068.  Back to cited text no. 33
[PUBMED]    
34.Malki A, Youssef A. Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol Res 2011;19:275-85.  Back to cited text no. 34
[PUBMED]    
35.Zhou XZ, Xue YM, Zhu B, Sha JP. [Effects of metformin on proliferation of human colon carcinoma cell line SW-480]. Nan Fang Yi Ke Da Xue Xue Bao 2010;30:1935-8, 1942.  Back to cited text no. 35
[PUBMED]    
36.Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 2010;17:351-60.  Back to cited text no. 36
[PUBMED]    
37.Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 2012;97:E510-20.  Back to cited text no. 37
[PUBMED]    
38.RezzonicoJ, RezzonicoM, PusiolE, PitoiaF, NiepomniszczeH.Metformin treatment for small benign thyroid nodules in patients with insulin resistance. Metab Syndr Relat Disord 2011;9:69-75.  Back to cited text no. 38
    
39.Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 2009;69:6539-45.  Back to cited text no. 39
[PUBMED]    
40.Wang LW, LiZ S, Zou DW, Jin ZD, Gao J, Xu GM. Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol 2008;14:7192-8.  Back to cited text no. 40
    
41.Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 2008;1:369-75.  Back to cited text no. 41
[PUBMED]    
42.Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, FoktI, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer 2011;117:2926-38.  Back to cited text no. 42
    
43.Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 2012;3:e275.  Back to cited text no. 43
[PUBMED]    
44.Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, BilliAM, et al. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opin Ther Targets 2012;16:729-42.  Back to cited text no. 44
    
45.Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011;71:3196-201.  Back to cited text no. 45
[PUBMED]    
46.Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat 2011;126:355-64.  Back to cited text no. 46
[PUBMED]    
47.Wang Y, Zhang MX, Duan XY, Zhou SN, Ermek T, Wang YN, et al. [Effects of antidiabetic drug metformin on human breast carcinoma cells with different estrogen receptor expressing in vitro]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2011;27:253-6.  Back to cited text no. 47
[PUBMED]    



This article has been cited by
1 Assessment of serum prolactin levels in acute myocardial infarction: The role of pharmacotherapy
HayderM Al-Kuraishy,AliI Al-Gareeb,MohamedS Awad,SinanB Alrifai
Indian Journal of Endocrinology and Metabolism. 2016; 20(1): 72
[Pubmed] | [DOI]
2 Incretin enhancement without hyperinsulinemia: a-glucosidase inhibitors
Sanjay Kalra
Expert Review of Endocrinology & Metabolism. 2014; : 1
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Cardioprotection
   Nephroprotection
   Hepatoprotection
   Adipoprotection
   Gonadoprotection
   Thyroprotection
   Conclusion
    References

 Article Access Statistics
    Viewed1729    
    Printed48    
    Emailed0    
    PDF Downloaded381    
    Comments [Add]    
    Cited by others 2    

Recommend this journal