Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
 
Search Article 
  
Advanced search 
  Users Online: 2340 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 
Table of Contents
REVIEW ARTICLE
Year : 2014  |  Volume : 18  |  Issue : 6  |  Page : 753-759

Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions


Senior Consultant Endocrinologist, G. D. Diabetes Hospital, Kolkata, West Bengal; Sun Valley Diabetes Hospital, Guwahati, Assam, India

Date of Web Publication20-Sep-2014

Correspondence Address:
Dr. Awadhesh Kumar Singh
Flat-1C, 3 Canal Street, Kolkata - 700 014, West Bengal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-8210.141319

Rights and Permissions
   Abstract 

The pharmacological actions of the glucagon-like peptide-1 receptor agonists (GLP-1RA) are largely predictable as they interact directly with GLP-1 receptors on beta cells to mediate their glucose lowering effects by increasing GLP-1 in pharmacological range and not at all dependent upon endogenous GLP-1 secretion. The mechanism of action of dipeptidyl peptidase-4 inhibitors (DPP-4I) are relatively less clear although classical mechanism is to inhibit the endogenous GLP-1 metabolism and thereby increasing GLP-1 level in the physiological range. DPP-4I also increase the half-life of GLP-1 to some extent by inhibiting their quick degradation by DPP enzyme ubiquitously present in the body. Interestingly, even with the effective blockade with currently existing DPP-4I, the half-life of GLP-1 only increases from 1 min to 5 min and therefore its residual time in plasma still remains pretty short. Intriguingly, this GLP-1 rise is so modest and so short-lived that it may be difficult to believe that this would sufficiently engage and activate the GLP-1 receptor in beta cell to produce significant insulinotropic effect. However, in clinical trials as well as in real life scenario, the anti-glycemic efficacies seen with DPP-4I are quite satisfactory and sometime very much competitive to GLP-1RA as evident from their head-to-head trials including meta-analysis. This efficacy outcome challenges the "only" GLP-1 dependent mechanism of glucose lowering and provokes an insight that other neuro-endocrine pathway may be playing a second fiddle. This review will collate those emerging concept and put a perspective as to how DPP-4I might be working though other pathway besides direct GLP-1 mediated receptor activation.

Keywords: Dipeptidyl peptidase-4 inhibitors, glucose-dependent intestinal polypeptide, glucagon-like peptide-1, glucagon-like peptide-1 agonist, incretin, type 2 diabetes


How to cite this article:
Singh AK. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J Endocr Metab 2014;18:753-9

How to cite this URL:
Singh AK. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J Endocr Metab [serial online] 2014 [cited 2019 Oct 22];18:753-9. Available from: http://www.ijem.in/text.asp?2014/18/6/753/141319


   Introduction Top


It is increasingly clear now that the entero-insular axis plays a major role in glucose homeostasis. Glucose-dependent intestinal polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) together termed "incretins" account for approximately 70% of beta cell insulin secretion and both peptides are necessary for normal glucose tolerance. [1] GLP-1 is the incretin hormone arises from the post-translational processing of pro-glucagon in intestinal L cells and secreted in two major forms: GLP-1 (7-36) and GLP-1 (7-37 amide) often termed "active" GLP-1. The main biological action of GLP-1 depends on their two N-terminal amino acid which are primarily removed by an enzymes dipeptidyl peptidase-4 (DPP-4) into truncated "inactive" GLP-1 (9-36, 9-37 amide). GLP-1 is responsible for glucose-dependent insulin secretion, suppression of glucagon secretion and delayed gastric emptying. Interestingly, ubiquitous distribution of DPP-4 results in GLP-1 having half-life of approximately 1 min only in the circulation. [1],[2]

Consequently, to exploit this gluco-metabolic effect of GLP-1 and to preserve and harness its characteristics two approaches were considered. The first approach included the development of GLP-1 receptor agonist (GLP-1RA) with closest possible homology to native GLP-1 structure, but resistant to DPP-4 and therefore capable of binding and stimulating GLP-1 receptor for a longer time. Another approach included the development of a molecule which can inhibit DPP-4 and thereby increases endogenous GLP-1 in circulation for a longer time. [2] Although, DPP-4 inhibitors (DPP-4I) prevents the degradation of active GLP-1, it does not significantly increase the levels of circulating total GLP-1 and does not prevent the kidney from rapidly clearing GLP-1. [3] An experimental animal studies demonstrated that although the levels of intact GLP-1 and GIP are preserved and increased following treatment with the DPP-4I (NVP-DPP728), the levels of total circulating incretins (degraded plus intact peptides) actually decreased for both GLP-1 and GIP. The mechanism underlying this observation remains unclear, but feedback inhibition on the K or L cell remains a possibility. [3] Another study by Dai et al. in healthy adults also demonstrated that although DPP-4I (PF-00734200) increases active GLP-1 concentration by 2-3-fold (over placebo), this does not occur in a linear fashion. The increase in GLP-1 was non-linear and not directly proportional to the glycemic efficacy. Moreover, even with near complete inhibition of DPP-4 for over 24 h with the highest possible dose of DPP-4I, the GLP-1 levels actually declined during the night compared with post-dinner levels. [4] Furthermore, with the use of currently available DPP-4I which typically exhibits effective (80-97%) DPP-4 inhibition, half-life of intact GLP-1 only increases from approximately 1 min to 5 min. [5],[6]

It is yet unclear whether DPP-4 is the only enzyme that contributes to the degradation of GLP-1. Although, some studies have implicated a role for neutral endopeptidase (NEP) 24.11 in the endoproteolysis of GLP-1, currently, there is little evidence from the use of inhibitors or genetic studies to ascertain the relative importance of NEP 24.11 for GLP-1 biology in vivo. [7],[8]

Taken together, it is now increasingly clear that the increase in circulating intact GLP-1 levels after DPP-4 inhibition seems to be modest or minimal as well as very short-lived. Consequently, it appears difficult to believe that this trivial GLP-1 rise would engages the GLP-1 receptors in beta cell accounting for effective glycemic control seen with the current uses of DPP-4I. Perhaps, this has raised serious doubt about a purely endocrine mechanism for DPP-4I ability to control blood glucose. [6]

This review will attempt to find out what could be a possible pathway apart from direct GLP-1 receptor-mediated mechanism by which DPP-4I may be lowering blood glucose.


   An Insight on Anti-Glycemic Efficacy of Dipeptidyl Peptidase-4 Inhibitor versus Glucagon like Peptide-1 Receptor agonists through Head-to-Head Trials Top


The pharmacological actions of the GLP-1RA are largely predictable as these agents are not susceptible to inactivation by DPP-4 and increase GLP-1 to near supra-physiological levels (50-60 pmol) in the plasma for several hours depending upon the pharmacokinetic and pharmcodynamic profile and duration of action of the GLP-1RA in question. Typically, longer acting agents would exhibit more sustained GLP-1 rise compared to shorter acting agents. Thus, it is quite clear that GLP-1RA interact directly with GLP-1 receptors on beta cells to mediate their anti-glycemic effects. However, the mechanisms of action of DPP-4I in relation to glycemic efficacy are relatively less clear as mentioned earlier.

Interestingly, head-to-head clinical trials comparing glycemic efficacy of DPP-4I with GLP-1RA revealed a thought provoking insights. Although, head-to-head trials of DPP-4I versus longer acting GLP-1RA suggested a clear superiority of longer acting GLP-1RA (once weekly) in all glycemic parameters, results with shorter acting GLP-1RA (exenatide twice daily and lixisenatide) are not very convincing when compared to DPP-4I [Table 1]. [9],[10],[11],[12],[13],[14],[15],[16],[17],[18] Notably, Glycosylated hemoglobin and fasting glucose did not differ significantly between DPP-4I versus shorter acting GLP-1RA. [9],[10],[11],[12] Liraglutide (LIRA) was also superior to sitagliptin in one study, however another study yielded non-inferiority. [13],[14] Moreover, a meta-analysis comparing GLP-1RA versus DPP-4I done from some of these trials also suggested a clear anti-glycemic superiority of longer acting GLP-1RA over DPP-4I, although no significant difference observed with shorter acting GLP-1RA. [19] It is worthwhile to mention that consistent weight loss seen with GLP-1RA and possibly some other extra-glycemic benefit including blood pressure reduction may be a clear advantage with existing GLP-1RA compared to DPP-4I. [19]
Table 1: Head-to-head trials of GLP-1 RA versus DPP-4 inhibitors

Click here to view


However, this near-competitive result from head-to-head studies represents a clinical conundrum and warrants a clear explanation as to why shorter acting GLP-1RA (in particular) is not substantially superior considering the enormous pharmacological GLP-1 rise with GLP-1 agonist compared to the trivial rise of GLP-1 with DPP-4I. Furthermore, this also excites to find out other possible neuro-endocrine mediated mechanism associated with DPP-4I.

Subcutaneous glucagon-like peptide-1 receptor agonist: Possible reason for less than expected response

When native GLP-1 is administered as a short-term intravenous (IV) infusion, a full normalization of glucose concentrations has been observed without any risk of gastro-intestinal (GI) side effects. In contrast, subcutaneous (SC) GLP-1RA reduces glucose to a clinically meaningful extent, however not completely able to bring it to normoglycemic range in spite of substantial and almost equal GLP-1 rise like native GLP-1. It is puzzling to know that studies with IV and SC GLP-1 agonist reported similar circulating steady-state plasma concentrations for both total and intact GLP-1, while the degree of normalization in glucose was significantly different. The reasons for this discrepancy are not yet fully clear, but following mechanistic explanation is currently being proposed. [20],[21]

  1. The short-lived peak in GLP-1 plasma concentration does not last longer than 60-90 min with SC route of administration [20],[21]
  2. Approximately 20% or even lower bioavailability of GLP-1 through SC administration [21]
  3. Inability to use a larger dose of SC GLP-1RA because of associated GI side effects-nausea and vomiting are observed at much lower GLP-1 doses than are necessary to display the full glucose-lowering effect [21]
  4. Possibility of GLP-1RA molecular modification, when it is exposed to the S.CSCsubcutaneous environment, cannot be ruled out [21]
  5. Possible interaction between higher local concentrations of GLP-1 with GLP-1 receptors in adipose tissue. [21]


It is worthwhile to note that peptidergic branches of autonomic nervous system also innervates the adipose tissue and exposure of GLP-1 receptors on these nerve endings to higher local GLP-1 can potentially trigger nausea and vomiting. If this GI side effect occurs at doses that are not sufficient to elevate systemic GLP-1 or GLP1-RA into the truly therapeutic range, this might explain both the issues of GI side effects and inability to reach normoglycemia as seen with IV GLP-1. [21]

Dipeptidyl peptidase-4 inhibitors: Possible reason for more than expected response

Dipeptidyl peptidase-4 inhibitors (DPP-4I) augment circulating concentrations of intact, biologically active, endogenously secreted GLP-1, and it is widely believed that the effects of DPP-4I are largely mediated by the physiological rise of endogenous GLP-1, although inconsistencies on such mechanism exist in the literature as mentioned earlier. GIP is also a substrate of DPP-4, but its insulinotropic effect is reduced in patients with type 2 diabetes.

Initial studies in mice with disruption of single incretin receptor with either GLP-1R -/- or GIP-R -/- could not abolish the glucose reducing property of DPP-4I. [22] This glucose lowering ability of DPP-4I in the absence of GLP-1 receptors led to an initial impression of non-GLP-1 mediated pathway and possible mediation of other incretins or neuropeptides in lowering glucose with DPP-4I. This was also thought to happen because of up-regulatory response of other receptors if one is knocked out. Nevertheless, with the simultaneous disruption of both the receptors GLP-1R -/- /GIP-R -/- in double incretin receptor knockout (DIRKO) mice, the glucose reducing properties of DPP-4I almost abolished thereby suggesting a major role of GLP-1 and GIP receptors as dominant mediators for anti-diabetic effect of DPP-4I. [23] In fact, these observations seen in DIRKO mice suggested GLP-1 as the sole (or major) mediator of the therapeutic effect of DPP-4 inhibition. [24] Ironically, there are emerging arguments that oppose this view. An earlier review by Nauck and El-Ouaghlidi suggested that the therapeutic actions of DPP-4I are not mediated by GLP-1 and cited following thought provoking reasons. [25]

  1. DPP-4I causes little increase in endogenous GLP-1
  2. Meal-stimulated levels of GLP-1 fall in response to DPP-4 inhibition
  3. DPP-4I have little effect on gastric emptying
  4. DPP-4I have delayed effects on glucose homeostasis.


This hypothesis was one of the first arguments that have led many to question whether the effects of DPP-4I are mediated solely through preserving intestinally secreted intact GLP-1. Subsequently, few recent studies have demonstrated that alpha cells also express and secrete GLP-1 and GIP and these islet alpha cell secreted incretins exert their insulinotropic effect directly on adjacent beta cells. Interestingly, a recent study confirms that DPP-4I might exert some of their effects on insulin secretion by preserving intact GLP-1 and GIP secreted from alpha cells. [26]

Second, a considerable number of gluco-regulatory peptides in addition to GLP-1 and GIP have been identified as exogenous substrates susceptible to DPP-4 cleavage, of which pituitary adenylate cyclase activating peptide (PACAP), gastrin-releasing peptide (GRP) and possibly oxyntomodulin (OXM) seems to possess an important role in glucose metabolism and deserve special mention:

  • Animals lacking DPP-4 exhibited a significantly slower clearance of circulating PACAP, with virtually complete suppression of the DPP-4 metabolite, PACAP [3-38]. [27] Study with exogenous infusion of PACAP38 and GRP evoked differential metabolic effects in wild versus DPP-4 -/- mice and simultaneous DPP-4 inhibition potentiate their insulinotropic response thereby suggesting a plausible role of this substrate in reducing glucose during acute and chronic DPP-4 inhibition. [28] This exploratory experimental study, looked whether DPP-4 inhibition (by valine-pyrrolidide) affects the insulin and glucose responses to IV glucose together with IV GLP-1, GIP, PACAP38 or GRP and suggested that the acute (1-5 min) insulin response to GLP-1 was augmented by val-pyr by 80%, that to GIP by 40%, that to PACAP38 by 75% and that to GRP by 25% (all P < 0.05). This was also associated with enhanced glucose elimination rate after GLP-1 and PACAP38 (both P < 0.01), but not after GIP or GRP and interestingly, the augmented insulin response to GRP by val-pyr was prevented by the GLP-1R antagonist exendin (9-39), raising the possibility that GRP effects may occur secondary to stimulation of GLP-1 secretion. Hence, this study concluded that the DPP-4 inhibition augments the insulin response not only to GLP-1, but also to GIP, PACAP38, and GRP [28]
  • Oxyntomodulin is a gut peptide in the pre-pro-glucagon family, which appeared to have acute gluco-regulatory effects and weight loss in preclinical models, attributed in part to GLP-1 receptor activation in non-diabetic humans. Experiments using mass spectroscopy identified OXM and growth hormone [1-43] fragment as a new candidate in vivo DPP-4 substrates. A very recent study in type 2 diabetes for the first time suggested its acute gluco-regulatory role comparable to LIRA, which is independent of weight loss. This study (N = 12) hypothesized that OXM has glucoregulatory effects in type 2 diabetes independent of weight loss and compared acute changes in pancreatic beta cell function in response to a single dose of either OXM (continuous IV infusion at 3 pmol/kg/min) or LIRA (0.6 mg, SC) in a setting of a randomized, double-blind, placebo-controlled, three-period crossover trial. Study revealed that the effects of OXM and LIRA on blunting of glycemic excursion were comparable (P = NS). This finding demonstrate for the first time that OXM may have significant direct acute glucoregulatory effects in type 2 diabetes, independent of weight loss. Hence, it can be postulated that DPP4-I may influence glucose control through OXM metabolism being its substrate. [29]


Third, enhanced DPP-4 activities in type 2 diabetes have been observed by many researchers; nevertheless these findings are discordant amongst individual studies. [30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40] Some studies suggested increased DPP-4 activity, some showed unchanged and some revealed decrease DPP-4 activity [Table 2]. However, a recent meta-analysis by Fadini et al. suggested a 33% enhanced DPP4 activity in type 2 diabetes. [40] Therefore, it can be assumed that the reduction of postprandial active GLP-1 in type 2 diabetes could possibly be attributable to either impairment in GLP-1 secretion or an increase of its degradation (because of enhanced DPP-4 activity), or both. If latter mechanism is substantiated through further studies as the dominant mechanism, than DPP-4I may play a further role in managing type 2 diabetes.
Table 2: DPP-4 activity in type 2 diabetes

Click here to view


Finally, some recent animal studies suggested other possible mechanism by which DPP-4I might be lowering blood glucose independent of endogenous GLP-1. Following theories have been proposed pending further substantiation in human studies. [41],[42],[43],[44],[45],[46]

Gut-to-brain-to-cell axis theory

Few experimental studies initially showed that a vagal hepato-pancreatic reflex is initiated by activation of the hepato-portal glucose sensor to control peripheral glucose utilization. This pathway required the simultaneous activation of brain GLP-1 signaling to trigger control of glucose-regulated insulin secretion, muscle blood flow and insulin sensitivity. These findings for the first time convincingly raises the possibility that the gluco-regulatory actions of DPP-4 may involve local regulation of the GLP-1-dependent gut-to-brain-to-periphery axis. [41],[42] Thus, to test this hypothesis, Waget et al. conducted an experimental study and inhibited DPP-4 activity in the intestine using very low oral dose of sitagliptin and concluded that selective local reduction in intestinal DPP-4 activity is sufficient for activation of the neurally mediated gut-to-brain-to-periphery axis. [43] Subsequently, few other studies also demonstrated that DPP-4I prandial glycemic control in part could be mediated via inhibition of intestinal DPP-4, proximal to the site of GLP-1 secretion which could lead to activation of the neural gut-to-brain-to-cell axis through a mechanism that does not require direct actions of circulating GLP-1 on islet cells. [43],[44],[45]

Portal sensing theory or neural theory or gut-to-cell axis theory

The dominant mechanism through which DPP-4 inhibition controls glycaemia may involve enteric GLP-1 signaling as a component of the gut-to-cell axis. Since the portal vein carries highest GLP-1 concentration of any major vessel in the circulation and the same visceral afferents that serve the portal vein also innervate the intestine including the L-cells that produce GLP-1, it is likely that local neural mechanism plays a dominant role in glucose balance. As 50% of GLP-1 is inactivated by DPP-4 in the capillaries of the gut before it reaches the portal vein, thus the potential for intestinal nerves to mediate GLP-1 action is more plausible explanation for GLP-1 action of DPP-4I. [43],[44],[45]

Enteral theory or portal: Systemic glucagon-like peptide-1 gradient theory

Higher GLP-1 concentration in Portal:Systemic circulation with DPP-4 inhibition might be doing some trick for DPP-4I. [43],[44],[45]

Dia-peptide theory

New evidence suggest a potential biological role for bioactive dipeptides "his-ala" and "tyr-ala" which is a metabolic product after breakdown of GLP-1 and GIP respectively by DPP-4. Recent studies suggest worsening of glycemia with this diapeptide and it is likely that this dipeptide may also regulate glucose metabolism. Reduced liberation of these bioactive diapeptides with the use of DPP-4I could also contribute to the therapeutic effects of DPP-4 inhibition. [43],[44],[45]

Paracrine theory

The mechanism through which GIP acts locally in the gut on glucose homeostasis is unknown but might be related to its role on intestinal glucose absorption by reducing intestinal motility through a somatostatin mediated pathway. [43],[44],[45]

Direct glucagon like peptide-1 secretagogue

Possible direct effects on the intestinal L cell, unexpectedly revealing a novel action for sitagliptin as a DPP-4-independent GLP-1 secretagogue. [46]

Taken together, these arguments cast doubt on the assumption that GLP-1 is the only, or at least the major, mediator of the clinical effects seen with DPP-4 inhibition. It should be noted that these emerging mechanism of action with DPP-4I have been primarily observed with either experimental DPP-4I or Sitagliptin, nonetheless; it is highly likely to be a class effect. These emerging theories also need to be substantiated through many more human studies as well as with other existing DPP-4I before any conclusion can be made.


   Conclusion Top


Although, SC GLP-1RA shows overall better glucose lowering than DPP-4I, it does not achieve near normoglyemia like native IV GLP-1. Unfortunately, SC GLP-1RA is associated with lower bioavailability and nagging gastrointestinal side effect at relatively lower dose, limiting its incremental dose-effect response. If these limitations with SC approach can be further confirmed in experimental studies; there could be possibilities of some improvement with available GLP-1RA. If a molecular modification occurs in adipose tissue lowering its bioavailability, peptides resistant to these modifications could be developed, or the enzymes responsible could be inhibited by appropriate agents. If SC nerves mediate adverse GI events, other routes of administration may be helpful and currently inhaled, and oral route of these agents are targeted.

The action of the DPP-4I appears to be only partially dependent on overall endogenous GLP-1, and other factors like pitutary adenylate cyclase activating peptide (PACAP), OXM, portal neural sensing, portal GLP-1 gradient, GIP, His-Ala dipeptide, alpha cell-mediated response and possibly some other yet unidentified substrates may also be involved in mediating the glucose lowering effects. Therefore, more effort should be put into elucidating the role of other pathway or other potential incretin hormones or neuropeptides to know the DPP-4I mechanism of action.

 
   References Top

1.Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007;132:2131-57.  Back to cited text no. 1
    
2.Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009;5:262-9.  Back to cited text no. 2
    
3.Deacon CF, Wamberg S, Bie P, Hughes TE, Holst JJ. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. J Endocrinol 2002;172:355-62.  Back to cited text no. 3
    
4.Dai H, Gustavson SM, Preston GM, Eskra JD, Calle R, Hirshberg B. Non-linear increase in GLP-1 levels in response to DPP-IV inhibition in healthy adult subjects. Diabetes Obes Metab 2008;10:506-13.  Back to cited text no. 4
    
5.Vahl TP, Paty BW, Fuller BD, Prigeon RL, D′Alessio DA. Effects of GLP-1-(7-36) NH2, GLP-1-(7-37), and GLP-1- (9-36) NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 2003;88:1772-9.  Back to cited text no. 5
    
6.Bock G, Dalla Man C, Micheletto F, Basu R, Giesler PD, Laugen J, et al. The effect of DPP-4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose. Clin Endocrinol (Oxf) 2010;73:189-96.  Back to cited text no. 6
    
7.Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H, et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1 (7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 1995;58:149-56.  Back to cited text no. 7
    
8.Hupe-Sodmann K, Göke R, Göke B, Thole HH, Zimmermann B, Voigt K, et al. Endoproteolysis of glucagon-like peptide (GLP)-1 (7-36) amide by ectopeptidases in RINm5F cells. Peptides 1997;18:625-32.  Back to cited text no. 8
    
9.DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin 2008;24:2943-52.  Back to cited text no. 9
    
10.Arnolds S, Dellweg S, Clair J, Dain MP, Nauck MA, Rave K, et al. Further improvement in postprandial glucose control with addition of exenatide or sitagliptin to combination therapy with insulin glargine and metformin: A proof-of-concept study. Diabetes Care 2010;33:1509-15.  Back to cited text no. 10
    
11.Berg JK, Shenouda SK, Heilmann CR, Gray AL, Holcombe JH. Effects of exenatide twice daily versus sitagliptin on 24-h glucose, glucoregulatory and hormonal measures: A randomized, double-blind, crossover study. Diabetes Obes Metab 2011;13:982-9.  Back to cited text no. 11
    
12.Available from: http://www.en.sanofi.com/img/content/study/EFC10780_summary.pdf. [Last accessed on 2014 Jun 20].  Back to cited text no. 12
    
13.Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: A 26-week, randomised, parallel-group, open-label trial. Lancet 2010;375:1447-56.  Back to cited text no. 13
    
14.Charbonnel B, Steinberg H, Eymard E, Xu L, Thakkar P, Prabhu V, et al. Efficacy and safety over 26 weeks of an oral treatment strategy including sitagliptin compared with an injectable treatment strategy with liraglutide in patients with type 2 diabetes mellitus inadequately controlled on metformin: A randomised clinical trial. Diabetologia 2013;56:1503-11.  Back to cited text no. 14
    
15.Bergenstal RM, Wysham C, Macconell L, Malloy J, Walsh B, Yan P, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): A randomised trial. Lancet 2010;376:431-9.  Back to cited text no. 15
    
16.Russell-Jones D, Cuddihy RM, Hanefeld M, Kumar A, González JG, Chan M, et al. Efficacy and safety of exenatide once weekly versus metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): A 26-week double-blind study. Diabetes Care 2012;35:252-8.  Back to cited text no. 16
    
17.Nauck M, Weinstock RS, Umpierrez GE, Guerci B, Skrivanek Z, Milicevic Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care 2014;37:2149-58.  Back to cited text no. 17
    
18.Ahrén B, Johnson SL, Stewart M, Cirkel DT, Yang F, Perry C, et al. HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. Diabetes Care. 2014;37:2141-8.   Back to cited text no. 18
    
19.Deacon CF, Mannucci E, Ahrén B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Diabetes Obes Metab 2012;14:762-7.  Back to cited text no. 19
    
20.Nauck MA, Wollschläger D, Werner J, Holst JJ, Orskov C, Creutzfeldt W, et al. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia 1996;39:1546-53.  Back to cited text no. 20
    
21.Nauck MA, Baranov O, Ritzel RA, Meier JJ. Do current incretin mimetics exploit the full therapeutic potential inherent in GLP-1 receptor stimulation? Diabetologia 2013;56:1878-83.  Back to cited text no. 21
    
22.Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A 2000;97:6874-9.  Back to cited text no. 22
    
23.Hansotia T, Baggio LL, Delmeire D, Hinke SA, Yamada Y, Tsukiyama K, et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 2004;53:1326-35.  Back to cited text no. 23
    
24.Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: Preclinical biology and mechanisms of action. Diabetes Care 2007;30:1335-43.  Back to cited text no. 24
    
25.Nauck MA, El-Ouaghlidi A. The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1. Diabetologia 2005;48:608-11.  Back to cited text no. 25
    
26.Omar B, Ohlsson L, Yamada Y, Seino Y, Ahren B. Direct enhancement of insulin secretion by dipeptidyl peptidase 4 inhibitors in pancreatic islets: Studies in incretin receptor deficient mice. Diabetologia. 2013;Abstract 44, EASD Barcelona.  Back to cited text no. 26
    
27.Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: In vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem 2003;278:22418-23.  Back to cited text no. 27
    
28.Ahrén B, Hughes TE. Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology 2005;146:2055-9.  Back to cited text no. 28
    
29.Shankar SS, Shankar R, Mixson L, Pramanik B, Stoch S, Steinberg HO, et al. Oxyntomodulin has significant acute glucoregulatory effects comparable to liraglutide in subjects with type 2 diabetes. Diabetolgia 2014;Abstract 48, EASD Barcelona.  Back to cited text no. 29
    
30.Toft-Nielsen M, Damholt M, Hilsted J, Hughes TE, Krarup T, Madsbad S, et al. GLP-1 secretion is decreased in NIDDM patients compared to matched control subjects with normal glucose tolerance. Diabetologia 1999;A40:143.  Back to cited text no. 30
    
31.Meneilly GS, Demuth HU, McIntosh CH, Pederson RA. Effect of ageing and diabetes on glucose-dependent insulinotropic polypeptide and dipeptidyl peptidase IV responses to oral glucose. Diabet Med 2000;17:346-50.  Back to cited text no. 31
    
32.Korosi J, McIntosh CH, Pederson RA, Demuth HU, Habener JF, Gingerich R, et al. Effect of aging and diabetes on the enteroinsular axis. J Gerontol A Biol Sci Med Sci 2001;56:M575-9.  Back to cited text no. 32
    
33.Mannucci E, Pala L, Ciani S, Bardini G, Pezzatini A, Sposato I, et al. Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 2005;48:1168-72.  Back to cited text no. 33
    
34.Ryskjaer J, Deacon CF, Carr RD, Krarup T, Madsbad S, Holst J, et al. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol 2006;155:485-93.  Back to cited text no. 34
    
35.McKillop AM, Duffy NA, Lindsay JR, O′Harte FP, Bell PM, Flatt PR. Decreased dipeptidyl peptidase-IV activity and glucagon-like peptide-1 (7-36) amide degradation in type 2 diabetic subjects. Diabetes Res Clin Pract 2008;79:79-85.  Back to cited text no. 35
    
36.Han SJ, Kim HJ, Choi SE, Kang Y, Lee KW, Kim DJ. Incretin secretion and serum DPP-IV activity in Korean patients with type 2 diabetes. Diabetes Res Clin Pract 2010;89:e49-52.  Back to cited text no. 36
    
37.Firneisz G, Varga T, Lengyel G, Fehér J, Ghyczy D, Wichmann B, et al. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease: A novel liver disease biomarker. PLoS One 2010;5:e12226.  Back to cited text no. 37
    
38.Pala L, Ciani S, Dicembrini I, Bardini G, Cresci B, Pezzatini A, et al. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in different glucose tolerance conditions. Diabet Med 2010;27:691-5.  Back to cited text no. 38
    
39.Lee S, Yabe D, Nohtomi K, Takada M, Morita R, Seino Y, et al. Intact glucagon-like peptide-1 levels are not decreased in Japanese patients with type 2 diabetes. Endocr J 2010;57:119-26.  Back to cited text no. 39
    
40.Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A. The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab 2012;14:518-22.  Back to cited text no. 40
    
41.Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF, Bernard E, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 2005;115:3554-63.  Back to cited text no. 41
    
42.Cabou C, Campistron G, Marsollier N, Leloup C, Cruciani-Guglielmacci C, Pénicaud L, et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 2008;57:2577-87.  Back to cited text no. 42
    
43.Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M, Karaca M, et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 2011;152:3018-29.  Back to cited text no. 43
    
44.D′Alessio DA. What if gut hormones aren′t really hormones: DPP-4 inhibition and local action of GLP-1 in the gastrointestinal tract. Endocrinology 2011;152:2925-6.  Back to cited text no. 44
    
45.Vella A. Mechanism of action of DPP-4 inhibitors: New insights. J Clin Endocrinol Metab 2012;97:2626-8.  Back to cited text no. 45
    
46.Sangle GV, Lauffer LM, Grieco A, Trivedi S, Iakoubov R, Brubaker PL. Novel biological action of the dipeptidylpeptidase-IV inhibitor, sitagliptin, as a glucagon-like peptide-1 secretagogue. Endocrinology 2012;153:564-73.  Back to cited text no. 46
    



 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 A comprehensive review of bioactive peptides obtained from animal byproducts and their applications
Julia Bechaux,Philippe Gatellier,Jean-François Le Page,Yoan Drillet,Véronique Sante-Lhoutellier
Food & Function. 2019;
[Pubmed] | [DOI]
2 Therapeutic experience of saxagliptin as first add-on after metformin in Indian type 2 diabetes patients: A non-interventional, prospective, observational study (ONTARGET-INDIA)
Sanjay Kalra,Sarita Bajaj,AG Unnikrishnan,ManashP Baruah,Rakesh Sahay,V Hardik,Amit Kumar
Indian Journal of Endocrinology and Metabolism. 2019; 23(3): 312
[Pubmed] | [DOI]
3 Sitagliptin protects the cognition function of the Alzheimer’s disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings
Qing Dong,Shuai-Wen Teng,Yue Wang,Feng Qin,Yue Li,Lu-Lu Ai,Hui Yu
Neuroscience Letters. 2019; 696: 184
[Pubmed] | [DOI]
4 Protective role of sitagliptin against oxidative stress in a kainic acid-induced status epilepticus in rats models via Nrf2/HO-1 pathway
Chong-Hao Wang,Na Zhu
Drug Development Research. 2019;
[Pubmed] | [DOI]
5 The Role of Glucagon-Like Peptide-1 in Energy Homeostasis
Marzieh Salehi,Jonathan Q. Purnell
Metabolic Syndrome and Related Disorders. 2019;
[Pubmed] | [DOI]
6 Effect of sitagliptin, a DPP-4 inhibitor, against DENA-induced liver cancer in rats mediated via NF-?B activation and inflammatory cytokines
Weidong Jiang,Dacheng Wen,Zhaohua Cheng,Yongsheng Yang,Ge Zheng,Fangying Yin
Journal of Biochemical and Molecular Toxicology. 2018; : e22220
[Pubmed] | [DOI]
7 Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention
Sin Yee Tan,Joyce Ling Mei Wong,Yan Jinn Sim,Su Sie Wong,Safa Abdelgadir Mohamed Elhassan,Sean Hong Tan,Grace Pei Ling Lim,Nicole Wuen Rong Tay,Naveenya Chetty Annan,Subrat Kumar Bhattamisra,Mayuren Candasamy
Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2018;
[Pubmed] | [DOI]
8 The new paradigm for androgenetic alopecia and plant-based folk remedies: 5a-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance
Nicholas John Sadgrove
Journal of Ethnopharmacology. 2018; 227: 206
[Pubmed] | [DOI]
9 Purification, identification and molecular mechanism of two dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Antarctic krill ( Euphausia superba ) protein hydrolysate
Wei Ji,Chaohua Zhang,Hongwu Ji
Journal of Chromatography B. 2017; 1064: 56
[Pubmed] | [DOI]
10 Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities
Wei Ji,Chaohua Zhang,Hongwu Ji
Journal of Food Science. 2017;
[Pubmed] | [DOI]
11 The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling
J. Domínguez Avila,Joaquín Rodrigo García,Gustavo González Aguilar,Laura de la Rosa
Molecules. 2017; 22(6): 903
[Pubmed] | [DOI]
12 Incretin-based therapy: renal effects
Anton Ivanovich Korbut,Vadim Valerievich Klimontov
Diabetes mellitus. 2016; 19(1): 53
[Pubmed] | [DOI]
13 Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats
Maha M. El Batsh,Manal M. El Batch,Noha M. Shafik,Ibrahim H. Younos
European Journal of Pharmacology. 2015; 769: 297
[Pubmed] | [DOI]
14 Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity
Yudi Purnomo,Djoko Wahono Soeatmadji,Sutiman Bambang Sumitro,Mochamad Aris Widodo
Asian Pacific Journal of Tropical Biomedicine. 2015; 5(8): 645
[Pubmed] | [DOI]
15 Bariatric surgery and diabetes remission: how far have we progressed?
Awadhesh Kumar Singh,Sunil Kumar Kota
Expert Review of Endocrinology & Metabolism. 2015; 10(5): 545
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    An Insight on An...
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed2841    
    Printed36    
    Emailed1    
    PDF Downloaded970    
    Comments [Add]    
    Cited by others 15    

Recommend this journal