Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
 
Search Article 
  
Advanced search 
  Users Online: 753 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 
Table of Contents
BRIEF COMMUNICATION
Year : 2015  |  Volume : 19  |  Issue : 1  |  Page : 171-173

Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid


1 Medical Intern, Pt. B.D. Sharma PGIMS, Rohtak, India
2 Medical Intern, Bhaskar Medical College and Bhaskar General Hospital, Hyderabad, Telangana, India
3 Medical Intern, Maharaja Agrasen Medical College, Agroha, Haryana, India
4 Fellow, Cataract and Refractive Services, Narayana Nethralaya, Bengaluru, Karnataka, India

Date of Web Publication12-Dec-2014

Correspondence Address:
Raja Chandra Chakinala
Bhaskar Medical College and Bhaskar General Hospital, Hyderabad, Telangana
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-8210.146877

Rights and Permissions
   Abstract 

Diabetes is a systemic disease associated with many complications. These can be prevented and managed effectively if detected promptly. Confocal microscopy (CFM) is a diagnostic tool which has the potential to help in early detection of disease and timely management. CFM has the potential to serve as an excellent noninvasive modality for in vivo imaging and morphological analysis, which can aid us in assessing and monitoring various infectious and pathological diseases at the cellular level. Besides ophthalmological indications, CFM has shown good sensitivity and specificity for identifying those at risk of neuropathy and foot ulceration, monitoring evolution and therapeutic response in a wide range of neuropathies apart from diabetic neuropathy. Through this communication, we aim to sensitize the endocrinologists towards cerebral cavernous malformation as a biomarker to evaluate potential outcomes and therapies in human diabetic neuropathy.

Keywords: Diabetic neuropathy, early diagnosis of diabetes, ophthalmology


How to cite this article:
Bhutani J, Chakinala RC, Bhutani S, Sachdeva S. Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid. Indian J Endocr Metab 2015;19:171-3

How to cite this URL:
Bhutani J, Chakinala RC, Bhutani S, Sachdeva S. Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid. Indian J Endocr Metab [serial online] 2015 [cited 2019 Nov 19];19:171-3. Available from: http://www.ijem.in/text.asp?2015/19/1/171/146877


   Introduction Top


Endocrine and metabolic diseases including diabetes are associated with complications, including neural damage. Early diagnosis, monitoring and follow up of these confounding complications pose a major challenge. [1] Confocal microscopy (CFM) is a diagnostic tool which has the potential to help in early detection of disease and timely management.

Concept of confocal microscopy

The basic principle of a confocal microscope is that a single point can be illuminated by light source and simultaneously imaged by a camera in the same plane that is, it is "confocal". This produces an image with a very high resolution, but it has virtually no field of view due to a single point of illumination and detection. To solve this problem, the instrument instantaneously illuminates and synchronously images, that is, it scans a small region of tissue with thousands of tiny spots of light, which are reconstructed to create a usable field of view with high resolution and magnification. By excluding most of the light from the specimen that is not from the microscope's focal plane it creates sharp images that would otherwise appear blurred when viewed with a conventional microscope. To add to it, it enables the reconstruction of three dimensional structures from the obtained images. [2]

Confocal microscopy and ocular disease

Confocal microscopy has the potential to serve as an excellent noninvasive modality for in vivo imaging and morphological analysis of all the layers of the cornea. This can aid us in assessing and monitoring various infectious and pathological corneal diseases at the cellular level. This was earlier possible only to invasive modalities like biopsy. It holds considerable promise in assessing tissue repair following surgery or injury and in conditions like infectious keratitis. It has the ability to differentiate between corneal edema due to corneal graft rejection and endothelial decomposition. [3]

Studies have shown that corneal small nerve fiber damage can be detected earlier to the electrophysiological changes and abnormalities in the quantitative nerve testing using this technique. [4] It gives a noninvasive measure of the thickness of the cornea after laser in situ keratomileusis (LASIK). It has a wide range of applicability such as in the detection and management of corneal dystrophies and ecstasies, monitoring contact lens induced damages and penetrating keratoplasty as well as evaluation of pre- and post-surgical (photorefractive keratectomy, LASIK, radial keratotomy and flap evaluations) changes in cornea. An in vivo study of cellular detail, microorganisms, and fibrosis, including Langerhans cells may complement our perception of the basic pathological mechanisms of corneal damage and immune response to tissue injury [Table 1]. [5]
Table 1: Ocular indications for CFM[5]


Click here to view


Confocal microscopy and systemic disease

Confocal microscopy is a useful diagnostic modality for metabolic or neurological disease as well. CFM has shown good sensitivity and specificity for identifying those at risk of neuropathy and foot ulceration, monitoring evolution and therapeutic response in a wide range of neuropathies apart from diabetic neuropathy. [6] CFM is a surrogate for assessment of peripheral nerve damage. [3] The accuracy of corneal CFM in assessing small nerve fiber damage is equivalent to skin biopsy in the assessment of intraepidermal nerve fiber loss. [7] Thus, the detection of small nerve fiber damage, which was earlier amenable to only invasive procedures like Sural nerve biopsy or skin punch biopsy can now be done accurately by a noninvasive corneal CFM. It has been recently shown to detect early nerve fiber repair following pancreas transplantation, [8] nerve fiber damage in patients with Fabry disease [9] and idiopathic small nerve neuropathy. [6] Very recently, it has been shown to detect the neuropathy in individuals with Impaired Glucose Tolerance [10] and early nerve fibre damage in those with recently diagnosed type 2 diabetes. [11] It may have a future as a stand-in marker for endothelial abnormalities as it can be used to inspect cell densities in different layers from epithelium to the endothelium, including immune cell densities [Table 2].
Table 2: Indications of CFM


Click here to view


Confocal microscopy limitations

As with any other procedure, CFM also has certain limitations. Only a limited number of excitation wavelengths are available with common lasers. These are clustered in very narrow bands as it is expensive to produce in the ultraviolet region. The harmful nature of the high-intensity irradiation to cells and tissues is another area of concern. But, this has recently been addressed by the use of multiphoton and Nipkow disc confocal imaging. [12] Their implementation in smaller laboratories is limited by the high cost of purchasing and operating multi-user CFM when compared to par wide field microscopes. This has been taken care of to some extent by the introduction of low-end personal confocal systems that comes at an affordable price for individual users.

With the recent advances in the digital systems that enable data compression and data storage the limitation of acquiring high quality and reproducible images have been promisingly overcome. Other constraints include photobleaching (process in which molecular structure of the dye is altered as a result of absorption of excitation light) and phototoxicity of the fluorescent probes, and the chromatic and spherical aberrations. [12]

Another clinical limitation of using CFM for neuropathy screening in Type 2 diabetes is due to higher prevalence of neuropathy and early nerve fibre damage. This is in contrast to Type 1 diabetes where it has been shown as an excellent diagnostic tool for neuropathy screening [Table 3]. [13]
Table 3: Limitations of CFM[12]


Click here to view



   Conclusion Top


Through this communication, we aim to sensitize the endocrinologists toward cerebral cavernous malformation (CCM) as a biomarker to evaluate potential outcomes and therapies in human diabetic neuropathy. Some key advantages of CCM include a noninvasive technique, reproducibility, quantitative, small nerve fiber assessment. However, still this modality demands considerable research before actual practical application. Studies need to be performed to determine if improvements in CCM parameters accurately coincide with improvements in traditional neuropathy outcomes as well as patient-centric outcomes-pain, disability, and quality of life. There have been few studies relating CFM and Type 2 diabetes mellitus, and this demands more attention. Finally, CCM has to be related to neuropathy outcomes and their measurements using a wider cohort of subjects. Thus, this might be seen as a robust tool to assess neuropathy in near future.

 
   References Top

1.
Kalra S, Unnikrishnan AG, Baruah MP. Diabetes therapy by the ear. Indian J Endocrinol Metab 2013;17:S596-8.  Back to cited text no. 1
    
2.
Efron N, Perez-Gomez I, Mutalib HA, Hollingsworth J. Confocal microscopy of the normal human cornea. Cont Lens Anterior Eye 2001;24:16-24.  Back to cited text no. 2
    
3.
Tavakoli M, Hossain P, Malik RA. Clinical applications of corneal confocal microscopy. Clin Ophthalmol 2008;2:435-45.  Back to cited text no. 3
    
4.
Malik RA, Veves A, Walker D, Siddique I, Lye RH, Schady W, et al. Sural nerve fibre pathology in diabetic patients with mild neuropathy: Relationship to pain, quantitative sensory testing and peripheral nerve electrophysiology. Acta Neuropathol 2001;101:367-74.  Back to cited text no. 4
    
5.
Paddock SW, Eliceiri KW. Laser scanning confocal microscopy: History, applications, and related optical sectioning techniques. In: Paddock SW, editor. Confocal Microscopy: Methods and Protocols. 2 nd ed. New York: Springer; 2014. p. 9-47.  Back to cited text no. 5
    
6.
Tavakoli M, Marshall A, Pitceathly R, Fadavi H, Gow D, Roberts ME, et al. Corneal confocal microscopy: A novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 2010;223:245-50.  Back to cited text no. 6
    
7.
Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007;56:2148-54.  Back to cited text no. 7
    
8.
Mehra S, Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Augustine T, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007;30:2608-12.  Back to cited text no. 8
    
9.
Tavakoli M, Marshall A, Thompson L, Kenny M, Waldek S, Efron N, et al. Corneal confocal microscopy: A novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 2009;40:976-84.  Back to cited text no. 9
    
10.
Asghar O, Petropoulos IN, Alam U, Jones W, Jeziorska M, Marshall A, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014;37:2643-6.  Back to cited text no. 10
    
11.
Ziegler D, Papanas N, Zhivov A, Allgeier S, Winter K, Ziegler I, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014;63:2454-63.  Back to cited text no. 11
    
12.
Pawley JB. Fundamental limits in confocal microscopy. In: Pawley JB, editor. Handbook of Biological Confocal Microscopy. 3 rd ed. New York: Springer; 2010. p. 20-43.  Back to cited text no. 12
    
13.
Kelly D, Halpem E, Lovblom L, Ngo M, Ng E, Bril V, et al. The efficacy of in-vivo corneal confocal microscopy for the diagnosis of diabetic sensorimotor polyneuropathy in type 2 diabetes (T2D). Can J Diabetes 2014;38:S14-5.  Back to cited text no. 13
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

   Abstract Introduction Conclusion Article Tables
  In this article
 References

 Article Access Statistics
    Viewed816    
    Printed11    
    Emailed0    
    PDF Downloaded191    
    Comments [Add]    

Recommend this journal