Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
 
Search Article 
  
Advanced search 
  Users Online: 1851 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 22  |  Issue : 2  |  Page : 249-255

Duration of casual sunlight exposure necessary for adequate Vitamin D status in Indian Men


1 Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
2 Department of Pediatrics Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
3 School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK

Correspondence Address:
Anuradha V Khadilkar
Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32 Sassoon Road, Pune, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2230-8210.232374

Rights and Permissions

Objectives: To investigate the duration of casual sunlight ultraviolet-B (UVB) exposure required to maintain optimal Vitamin D status (25-hydroxyvitamin-D [25(OH)D]) >50 nmol/L in urban Indian men, using polysulfone (PSU) dosimeters and a sunlight exposure questionnaire. Methods: In healthy men (aged 40–60 years) from Pune (18.52° N, 73.86° E), India, serum 25(OH)D was measured using enzyme-linked immunosorbent assay. Sunlight exposure was assessed using PSU dosimeter and by questionnaire. Results: Of 160 men (48.3 ± 5.6 years), 26.8% were deficient and 40.6% had insufficient Vitamin D concentrations. A hyperbolic function for the relationship between PSU measured sunlight exposure in standard erythema dose (SED) and serum 25(OH)D concentrations (r = 0.87, P < 0.01) revealed that daily exposure of 1 SED was sufficient to maintain serum 25(OH)D concentrations over 50 nmol/L. The curve plateaued around 5 SED (80 nmol/L) and extrapolation of the curve (>5 SED) did not increase 25(OH)D concentrations above 90 nmol/L. Receiver operating curve analysis confirmed that 1 SED-UV exposure was sufficient to maintain 25(OH)D concentrations over 50 nmol/L. Based on the questionnaire data, >1 h of midday casual sunlight exposure was required to maintain serum 25(OH)D concentrations above 50 nmol/L. Duration of sunlight exposure assessed by questionnaire and PSU dosimeter showed a significant correlation (r = 0.517, P < 0.01). Conclusion: In urban Indian men, >1 h of casual midday sunlight exposure daily was required to maintain serum 25(OH)D concentrations above 50 nmol/L, and >2 h of casual sunlight exposure was needed to maintain 25(OH)D concentrations above 75 nmol/L. Excess sunlight did not increase 25(OH)D linearly. The sunlight exposure questionnaire was validated for use in clinical studies and surveys.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3335    
    Printed8    
    Emailed0    
    PDF Downloaded210    
    Comments [Add]    
    Cited by others 3    

Recommend this journal