Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
Search Article 
Advanced search 
  Users Online: 83 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Year : 2013  |  Volume : 17  |  Issue : 3  |  Page : 490-495

Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study

1 Department of Pediatrics, Hamad Medical Center (HMC), Doha, Qatar
2 Department of Hematology, Hamad Medical Center (HMC), Doha, Qatar
3 Department of Pediatrics, Adolescent Outpatient Clinic, Quisisana Hospital, 44100 Ferrara, Italy

Correspondence Address:
Ashraf T Soliman
Department of Pediatrics, Hamad Medical Center, P.O. Box 3050, Doha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2230-8210.111647

Rights and Permissions

Background: Both insulin deficiency and resistance are reported in patients with β-thalassemia major (BTM). The use of continuous blood glucose monitoring (CGM), among the different methods for early detection of glycemic abnormalities, has not been studied thoroughly in these adolescents. Materials and Methods: To assess the oralglucose tolerance (OGT) and 72-h continuous glucose concentration by the continuous glucose monitoring system (CGMS) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) was conducted in 16 adolescents with BTM who were receiving regular blood transfusions every 2-4 weeks and iron-chelation therapy since early childhood. Results: Sixteen adolescents with BTM (age: 19.75 ± 3 years) were investigated. Using OGTT, (25%) had impaired fasting blood (plasma) glucose concentration (BG) (>5.6 mmol/L). 2-h after the glucose load, one of them had BG = 16.2 mmol/L (diabetic) and two had impaired glucose tolerance (IGT) (BG > 7.8 and <11.1 mmol/L). Monitoring the maximum (postprandial) BG using CGMS,4 adolescents were diagnosed with diabetes (25%) (BG >11.1 mmol/L) and 9 with IGT (56%). HOMA and QUICKI revealed levels <2.6 (1.6 ± 0.8) and >0.33 (0.36 ± 0.03), respectively, ruling out significant insulin resistance in these adolescents. There was a significant negative correlation between the β-cell function (B%) on one hand and the fasting and the 2-h BG (r=−0.6, and − 0.48, P < 0.01, respectively) on the other hand. Neither fasting serum insulin nor c-peptide concentrations were correlated with fasting BG or ferritin levels. The average and maximum blood glucose levels during CGM were significantly correlated with the fasting BG (r = 0.68 and 0.39, respectively, with P < 0.01) and with the BG at 2-hour after oral glucose intake (r = 0.87 and 0.86 respectively, with P < 0.001). Ferritin concentrations were correlated with the fasting BG and the 2-h blood glucose levels in the OGTT (r = 0.52, and r = 0.43, respectively, P < 0.01) as well as with the average BG recorded by CGM (r = 0.75, P < 0.01). Conclusion: CGM has proven to be superior to OGTT for the diagnosis of glycemic abnormalities in adolescents with BTM. Defective β-cell function rather than insulin resistance appeared to be the cause for these abnormalities.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded497    
    Comments [Add]    
    Cited by others 11    

Recommend this journal