ORIGINAL ARTICLE |
|
Year : 2017 | Volume
: 21
| Issue : 5 | Page : 719-723 |
|
Iodine status among subclinical and overt hypothyroid patients by urinary iodine assay: A case–control study
Uma Shrestha1, Narayan Gautam1, Krishna Kumar Agrawal2, Amit Chandra Jha1, Archana Jayan1
1 Department of Biochemistry, Universal College of Medical Sciences, Bhairahawa, Nepal 2 Department of Internal Medicine, Universal College of Medical Sciences, Bhairahawa, Nepal
Correspondence Address:
Narayan Gautam Department of Biochemistry, Universal College of Medical Sciences, PO 53, Ranigaon, Bhairahawa Nepal
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/ijem.IJEM_413_16
|
|
Objectives: The objective of the study was to assess the differences of iodine status as measured by urinary iodine excretion (UIE) between cases of hypothyroidism and healthy controls. Materials and Methods: The study was conducted in cases with subclinical hypothyroidism (n = 58) and overt hypothyroidism (n = 41) and compared with age- and sex-matched healthy euthyroid controls (n = 52) attending Universal College of Medical Sciences Teaching Hospital, Bhairahawa, Nepal. Serum free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH) were estimated by competitive ELISA and sandwich ELISA, respectively (Diametra, Italy). The urinary iodine concentration (UIC) in urine samples was estimated by ammonium persulfate digestion method recommended by the WHO. Results: A significantly higher median UIC was observed among cases of subclinical hypothyroidism (224.90 μg/l) and overt hypothyroidism (281.0 μg/l) as compared to the controls (189.90 μg/l) (P = 0.0001, P = 0.001). Serum TSH in the cases of subclinical hypothyroid was higher, whereas fT3 was lower as compared to controls (P = 0.028, P = 0.0001), respectively. Similarly, serum TSH in the cases of overt hypothyroid was higher and fT3 and fT4 were lower as compared to controls (P = 0.0001, P = 0.0001, P = 0.015), respectively. There was positive correlation of UIC with TSH (r = 0.269, P = 0.0001), whereas negative correlation was seen with fT3 (r = −0.328, P = 0.0001) and fT4 (r = −0.145, P = 0.076). The test of multiple regression has shown that fT3(β = −0.262, P = 0.012) as an independent predictor in association with UIE in cases. Conclusion: Excessive iodine intake was found in hypothyroid patients as assessed by UIE concluding that it may trigger the thyroid hypofunction. Cohort studies to generate further evidence should be done to explore potential mechanism of hypothyroidism in excess iodine intake.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|