Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
Search Article 
Advanced search 
  Users Online: 920 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

Table of Contents
Year : 2018  |  Volume : 22  |  Issue : 1  |  Page : 30-35

Diabetic retinopathy awareness and associations with multiple comorbidities: Insights from DIAMOND Study

1 Director, Diabetes and Thyroid Care Center, Borivali West, Mumbai, India
2 Director, Aayushi Diabetes Center, Mumbai, India
3 Chairman and Medical Director, Aditya Jyot Eye Hospital Pvt. Ltd., Mumbai, Maharashtra, India

Date of Web Publication8-Feb-2018

Correspondence Address:
Kiran Shah
Diabetes and Thyroid Care Center, Borivali West, Mumbai - 400 092, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijem.IJEM_240_17

Rights and Permissions

Background: Diabetic retinopathy (DR) is leading cause of visual impairment in working-age adults. Macular edema can occur with or without other signs of retinopathy. Methods: This was a single-center, retrospective study conducted over 2 years in patients (>40 years of age) having type 2 diabetes mellitus (T2DM). Outcome measures were to analyze awareness and prevalence of DR and association of DR with identified risk factors. Results: Overall 6000 T2DM patients over 2 years were retrospectively evaluated. Almost 63% (n = 3780) of patients were unaware that diabetes affects the retina. Almost 65% (n = 3894) of patients were reported to have DR. Total 78.98% of males, and 69.50% of females had DR. There was a significant increase in the incidence of DR with age (P < 0.00001). Almost 60.80% (n = 3653) of patients having DR were from working age group (40–70 years). Evidently, 42% (n = 2520) of patients having DR had HbA1c > 9% (P < 0.00001). Overall 52.02% (n = 1820) of smokers were reported of DR (P < 0.00001). With the increase in total cholesterol and triglycerides, there was a significant increase in DR incidence (P < 0.00001). A strong association was observed between hypertension and DR, with 42.6% (n = 2556) of patients having coexistence of hypertension and DR (P < 0.00001). Patients having diabetic kidney disease (DKD) also reported DR. A high proportion of patients (49.11%, n = 2947) had co-existence of cardiac morbidity and DR. Almost 47% (n = 2845) of patients having DR were also reported anemia. Totally 43.85% (n = 2631) of patients with microalbuminuria had two times more risk of developing proliferative DR (P < 0.00001). The statistical significance for the association of DR with risk factors, calculated by Pearson Chi-Square method of analysis was found statistically significant (P < 0.00001). Conclusion: The study reported the high prevalence and significantly high unawareness for DR in T2DM patients. All the risk factors are independently and significantly associated with DR (P < 0.00001).

Keywords: Diabetic retinopathy, India, nonproliferative diabetic retinopathy, proliferative diabetic retinopathy, type 2 diabetes mellitus

How to cite this article:
Shah K, Gandhi A, Natarajan S. Diabetic retinopathy awareness and associations with multiple comorbidities: Insights from DIAMOND Study. Indian J Endocr Metab 2018;22:30-5

How to cite this URL:
Shah K, Gandhi A, Natarajan S. Diabetic retinopathy awareness and associations with multiple comorbidities: Insights from DIAMOND Study. Indian J Endocr Metab [serial online] 2018 [cited 2021 Jul 24];22:30-5. Available from: https://www.ijem.in/text.asp?2018/22/1/30/224990

   Introduction Top

Diabetic retinopathy (DR) is a most important cause of impairment of vision among working-age individuals. Patients with diabetes mellitus (DM) have demonstrated defects in neurosensory function before the onset of vascular lesions.[1] The long duration of diabetes leads to microangiopathy changes which include protein synthesis in extracellular matrix and thickening of the capillary basement membrane.[2] In Indian type 2 DM (T2DM) patients of age ≥40 years, reported retinopathy prevalence was 21.7%.[3] Several published studies reported that in patients with diabetes the increase in cardiovascular (CV) risk was directly proportional to presence and severity of retinopathy.[4],[5],[6],[7],[8],[9] Even at early stages of DR concurrence of microvascular and macrovascular abnormalities have been reported. The study also highlighted that all patients with significant macular edema should be screened for nephropathy.[10] The TREAT (Trial to reduce CV Events with Aranesp Therapy) study reported that retinopathy was noted in almost 47% of patients of T2DM with chronic kidney disease. Compared to the patients without retinopathy, longer duration of diabetes, more proteinuria and lower GFR were reported in retinopathy patients.[11] The objective of this study was to assess the awareness of DR and its association with multiple comorbidities. Risk factors studied for their associations with DR were, gender, age, smoking, glycemic control, diabetes duration, dyslipidemia, hypertension, microalbuminuria and diabetic kidney disease (DKD), anemia, and cardiac disease.

   Methods Top

Study design and data extraction

DIAMOND (DR Awareness and Associations with Multiple Comorbidities) study was a single-center; retrospective study conducted over 2 years. Data of patients with T2DM visiting a tertiary care hospital in Mumbai, India between 2013 and 2015 were collected and analyzed. Data recorded in electronic medical records were extracted and analyzed manually in January 2016. This data included patient demography, medical history, relevant current medical status, laboratory investigations, and medications prescribed.


Inclusion criteria were patients with T2DM of age ≥40 years, whereas exclusion criteria were Type 1 diabetes (T1DM) and pregnancy.

Outcome measures

The primary outcome measures of the study were to analyze awareness and prevalence of DR and to subsequently study the association of DR with identified risk factors including, gender, age, duration of diabetes, smoking status, glycated hemoglobin levels, treatment therapy for T2DM, lipid profile, hypertension, microalbuminuria, DKD, cardiac morbidity, and anemia. A validated questionnaire was used to assess awareness of DR. Dilated Fundus photos were taken on Carl Zeiss Fundus Camera. DR was graded by modified Airlie House Classification.

Compliance with ethics guidelines

This study was conducted in accordance with the principles of the Declaration of Helsinki,[12] guidelines for good pharmacoepidemiology practice and local regulatory guidelines. Medical data of the patients who had given their prior consent was collected and analyzed in this study.

Statistical analysis

The study results were statistically analyzed using “goodness of fit” or Pearson's Chi-square test for Independence. Discontinuous or categorical data are expressed as a percentage. P values were reported and interpreted at 5% level of significance.

   Results Top

Baseline characteristics

Overall records and data of 6000 T2DM patients were analyzed. Baseline characteristics are given in [Table 1].
Table 1: Baseline characteristics

Click here to view

Awareness about diabetic retinopathy

Almost 63% (n = 3780) of patients are unaware of the fact that diabetes affects the retina. Moreover, 68% (n = 4080) of patients included in the study, were unaware if DR can be prevented or treated. Dilated fundus examination was not recommended to 73% (n = 4380) of patients by their diabetes care provider. Majority of patients (92%, n = 5520) had undergone first dilated fundus examination only when their vision was affected. When questioned for a reason for not seeking a retinal examination, 86% (n = 5160) of patients reported “I can see everything” as the answer [Figure 1].
Figure 1: Awareness of diabetic retinopathy

Click here to view

Stages of retinopathy

Almost 65% (n = 3894) of patients were reported to have DR, 28.58% (n = 1715) of patients had only nonproliferative DR (NPDR), 19.51% (n = 1171) of patients had proliferative DR (PDR). Totally 21.8% (n = 1308) of patients had diabetic macular edema (DME). Among these, 13% (n = 799) of patients were reported to have NPDR and DME, whereas 8.48% (n = 509) of DME patients reported PDR + DME.

Risk factors associated with diabetic retinopathy

Gender and diabetic retinopathy

Overall 79% (n = 2763) of male and 69.50% (n = 1739) of female patients had DR. Out of which, 53.80% (n = 1882) and 25.18% (n = 881) of male patients had NPDR and PDR, respectively. Similarly, 50.47% (1263) and 19% (n = 476) of female patients had NPDR and PDR, respectively. DR was found to be associated significantly more with male patients compared to female patients (P < 0.00001) [Table 2].
Table 2: Patients with any kind of diabetic retinopathy and associated risk factors

Click here to view

Age and diabetic retinopathy

The incidences of DR increased with increasing age, 37.41% (n = 485), 68.52% (n = 1612), and 78.34% (n = 1612) among 40–50 years, 51–60 years and 61–70 years age groups, respectively. NPDR showed higher prevalence than PDR in all the age groups except age group of 81–90 years. DR was associated found to be significant with the age of patients (P < 0.00001) [Table 2].

Duration of type 2 diabetes mellitus and diabetic retinopathy

The incidence of DR in patients with T2DM of at least 5 years was 65%. NPDR was noted higher than PDR in all the patients. A significant association was noted with DR and increase in diabetes duration (P < 0.00001) [Table 2].

Smoking and diabetic retinopathy

Overall 90% of smokers had DR. However, 59% of nonsmokers also reported DR. DR was found to be associated significantly with smoking (P < 0.00001) [Table 2].

Glycemic control and diabetic retinopathy

Incidence of DR was reported to be a minimum of 57.58% (n = 364) for HbA1c range of 7%–7.9%, to a maximum of 68.63% (n = 1394) for those with HbA1c >10%. In all the patients observed to have DR, NPDR was emerged as the type with higher incidence rate as compared to PDR. There was a significant association between poor glycemic control and DR (P < 0.00001) [Table 2].

Treatment modality and diabetic retinopathy

Almost 69% (n = 2070) of patients on oral hypoglycemic agents (OHA) had DR. Among these, 54.64% (n = 1640) of patients had NPDR. In patients on OHA and insulin treatment, 72.32% (n = 2169) of patients had DR, of which majority (40.31%, n = 1209) were diagnosed with PDR. DR was found to be associated significantly in patients with OHA and insulin treatment (P < 0.00001) [Table 2].

Lipid profile and diabetic retinopathy

DR was reported in higher proportion of patients with total cholesterol >200 mg/dL as compared to those having total cholesterol <200 mg/dL (75.74% vs. 56.16%). Similarly, occurrence of DR was greater in patients with triglycerides >200 mg/dL as compared to those having levels of triglycerides <200 mg/dL (75.40% vs. 52.91%) NPDR was reported to have higher presence than PDR in all the DR groups, for both total cholesterol and triglycerides. DR was found to be associated significantly with disturbed lipid profile (P < 0.00001) [Table 2].

Hypertension and diabetic retinopathy

Assessment for the presence of hypertension and DR revealed that 74.38% (n = 2556) of patients having hypertension also had DR. Hypertension and DR were found to have significant association (P < 0.00001) [Table 2].

Microalbuminuria and diabetic retinopathy

Among patients who were reported to have microalbuminuria, significantly higher number of patients (85.8%, n = 2631) were detected with DR. DR was found to be associated significantly with microalbuminuria (P < 0.00001) [Table 2].

Diabetes kidney disease and diabetic retinopathy

All the patients having DKD also reported to be detected with DR. More than half of DKD patients (56.61%, n = 710) had NPDR. Significant association between DR and DKD was observed (P < 0.00001) [Table 2].

Cardiac morbidity and diabetic retinopathy

High proportion of patients (81.28%, n = 2947) included in the study had co-existence of cardiac morbidity and DR. The difference between the types of DR was not much in this population (NPDR - 43.22% vs. PDR - 38.06%). DR was found to be associated significantly with cardiac morbidity (P < 0.00001) [Table 2].

Anemia and diabetic retinopathy

Among patients suffering from anemia, 84% (n = 2845) of patients also had DR, with higher occurrence rate for NPDR (52.80%, n = 1789). Anemia and DR were found to have significant association (P < 0.00001) [Table 2].

   Discussion Top

Diabetes leads to microvascular and macrovascular complications. Published evidence highlighted that DR is a major complication associated with T2DM. The present study provides data on prevalence and types of DR in individuals with T2DM assessed through validated questionnaire, and dilated fundus examination. We retrospectively studied the association of different risk factors with DR across 6000 type 2 diabetes patients. Most of our results complied with the conclusions of previously reported clinical studies.

Number of patients unaware of the fact that diabetes affects retina were very high in this study. Unawareness also existed among the patients regarding the fact whether DR can be prevented or treated. Majority of patients reported to have undergone first dilated fundus examination only when their vision was affected. Prevalence of retinopathy was found to be 65% in our study. This was found to be three times of the epidemiology (21.7%) reported in a recent Indian study.[3]

In this study, we observed men be more affected with DR as compared to women. LALES study highlighted 50% higher risk (P = 0.006) of DR in males versus Females.[13] Similarly, UK Prospective Diabetes Study (UKPDS) 50 study has reported that the relative risk for progression of DR was lower in women (P = 0.0016).[14]

The prevalence of DR was found to be higher in diabetic patients of ≥40 years (P = 0.01).[3] In the present study, incidence of DR increased with increase age. Only 37% of patients having any DR were below 50 years of age. Thus, age is an important risk factor for the development of DR.

Published studies reported that the duration of diabetes in patients with DR is almost double compared to patients without DR (P < 0.0001).[15],[16] Wong et al. have reported that the odds ratio of DR increased by 1.07/year of the duration of disease.[17] In our study, diabetes for more than 5 years was associated with DR in more than half of patients (P < 0.00001).

In a 25-year follow-up study, mild NPDR was commonly reported among existing smokers compared to former smokers (P = 0.038) suggesting that its association with the development of DR.[18] In the present study, DR was noted significantly higher in smokers than nonsmokers.

Results from the Chennai urban, rural epidemiology study (CURES) eye study suggested that the prevalence of DR also increased significantly with increase in glycated hemoglobin levels.[19] Our results are in concordance with the previous reports of the strong and significant relation between the presence of DR and poor diabetes control. With the increase in the proportion of glycated hemoglobin, the number of patients with any DR increased progressively.

The UKPDS reported that degree of glycemic control was the most important component than the anti-diabetic medication for prevention of retinopathy.[20] The study however reported, stronger and significant (P < 0.00001) association of DR with a combination of insulin and OHAs as compared to those on only OHAs.

In the present study, higher levels of total cholesterol and triglycerides were noted in the majority of patients having DR. Previously published studies have noted the relationship between retinal hard exudates with total cholesterol and low-density lipoprotein cholesterol in patients of DR.[21],[22] Furthermore, CURES Eye study reported the association of total cholesterol, non-HDL cholesterol and serum triglycerides with DR.[23]

Aggressive BP control (144/82 mmHg) in patients with T2DM reported a decrease in the development of DR, loss of vision and requirement of laser photocoagulation versus less aggressive BP control (154/87 mmHg).[24] More than half of patients in this study presented with hypertension with DR. In addition, hypertensive patients were majorly detected with NPDR.

Reported evidence suggests that in patients with microalbuminuria and macroalbuminuria reported two times and six times higher risk of DR, respectively.[25] Furthermore, CURES study also reported that the patients with DR had significantly higher risk of nephropathy (P < 0.0001) compared to nonDR patients.[26] In our study, among patients reported with microalbuminuria, the majority had DR, with NPDR being higher prevalent. All the patients diagnosed with DKD had the presence of DR.

In our study, the significantly larger proportion of patients had co-existence of cardiac morbidity and DR, with NPDR being the major type. It has been noted that there is 1.7 times increased the risk of stroke, coronary artery disease, and heart failure in patients with T2DM with DR.[27] CAD was reported to be higher in DR group as per the data from CURES study.[28]

We observed the presence of DR in significantly high number of patients suffering from anemia in our study which is in accordance with a recently published study where there was a higher prevalence of anemia in individuals with DR was noted (P < 0.001).[29] Moreover, anemia has also been shown to aggravate hypoxia in the retina, thus leading to progression of DR.[30]

The main strengths were the availability of retinal photography screening data, categorization of DR in the patients' clinical records, use of a population-based database, large sample size, the inclusion of both gender, extensive age groups of patients were observed, and substantial analysis of relevant clinical data of the past 2 years. It is noteworthy that our results can be extremely relevant for clinical practice since the study was conducted in tertiary care hospital. Limitations of the study included the single center of study and noninclusion of T1DM patients.

   Conclusion Top

This retrospective study (n = 6000), conducted in a real-life scenario in Indian patients, reported the high prevalence and significantly high unawareness for DR in patients. Significant association of risk factors – male gender, higher age, longer diabetes duration, hyperglycemia, smoking history, insulin and OHA treatment, impaired lipid profile, high blood pressure, microalbuminuria, DKD, cardiac morbidity and anemia, with the association of DR in T2DM patients (P < 0.00001). The study has also categorized the observations according to the types of DR, including PDR and NPDR. NPDR was found to be the predominant type in this study.


The authors are thankful to Dr. Onkar C. Swami for manuscript preparation and editorial assistance.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

American Academy of Ophthalmology Retina/Vitreous Panel. Preferred Practice Pattern Guidelines. Diabetic Retinopathy. San Francisco, CA: American Academy of Ophthalmology; 2016. Available from: https://www.aao.org/preferred-practice-pattern/diabetic-retinopathy-ppp-updated-2016. [Last assessed on 2017 Oct 06].  Back to cited text no. 1
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab 2016;20:546-51.  Back to cited text no. 2
Gadkari SS, Maskati QB, Nayak BK. Prevalence of diabetic retinopathy in India: The all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J Ophthalmol 2016;64:38-44.  Back to cited text no. 3
[PUBMED]  [Full text]  
Cheung N, Wang JJ, Klein R, Couper DJ, Sharrett AR, Wong TY, et al. Diabetic retinopathy and the risk of coronary heart disease: The atherosclerosis risk in communities study. Diabetes Care 2007;30:1742-6.  Back to cited text no. 4
Kawasaki R, Tanaka S, Tanaka S, Abe S, Sone H, Yokote K, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: The Japan diabetes complications study. Ophthalmology 2013;120:574-82.  Back to cited text no. 5
Gerstein HC, Ambrosius WT, Danis R, Ismail-Beigi F, Cushman W, Calles J, et al. Diabetic retinopathy, its progression, and incident cardiovascular events in the ACCORD trial. Diabetes Care 2013;36:1266-71.  Back to cited text no. 6
Miettinen H, Haffner SM, Lehto S, Rönnemaa T, Pyörälà K, Laakso M, et al. Retinopathy predicts coronary heart disease events in NIDDM patients. Diabetes Care 1996;19:1445-8.  Back to cited text no. 7
Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Retinopathy predicts cardiovascular mortality in type 2 diabetic men and women. Diabetes Care 2007;30:292-9.  Back to cited text no. 8
Klein R, Klein BE, Moss SE, Cruickshanks KJ. Association of ocular disease and mortality in a diabetic population. Arch Ophthalmol 1999;117:1487-95.  Back to cited text no. 9
Venkatesh P, Tibrewal S, Bhowmik D, Tripathi M, Ramakrishnan S, Vashist N, et al. Prevalence of systemic co-morbidities in patients with various grades of diabetic retinopathy. Indian J Med Res 2014;140:77-83.  Back to cited text no. 10
[PUBMED]  [Full text]  
Bello NA, Pfeffer MA, Skali H, McGill JB, Rossert J, Olson KA, et al. Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Res Care 2014;2:e000011.  Back to cited text no. 11
WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects 64th WMA General Assembly, Fortaleza, Brazil; October, 2013. Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. [Last assessed on 2017 Oct 06].  Back to cited text no. 12
Varma R, Macias GL, Torres M, Klein R, Peña FY, Azen SP, et al. Biologic risk factors associated with diabetic retinopathy: The Los Angeles Latino Eye Study. Ophthalmology 2007;114:1332-40.  Back to cited text no. 13
Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: Risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 2001;44:156-63.  Back to cited text no. 14
De Block CE, De Leeuw IH, Van Gaal LF. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care 2005;28:1649-55.  Back to cited text no. 15
Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA 2010;304:649-56.  Back to cited text no. 16
Wong TY, Cheung N, Tay WT, Wang JJ, Aung T, Saw SM, et al. Prevalence and risk factors for diabetic retinopathy: The Singapore Malay Eye Study. Ophthalmology 2008;115:1869-75.  Back to cited text no. 17
Gaedt Thorlund M, Borg Madsen M, Green A, Sjølie AK, Grauslund J. Is smoking a risk factor for proliferative diabetic retinopathy in type 1 diabetes? Ophthalmologica 2013;230:50-4.  Back to cited text no. 18
Pradeepa R, Anitha B, Mohan V, Ganesan A, Rema M. Risk factors for diabetic retinopathy in a South Indian type 2 diabetic population – The Chennai urban rural epidemiology study (CURES) eye study 4. Diabet Med 2008;25:536-42.  Back to cited text no. 19
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837-53.  Back to cited text no. 20
Klein BE, Moss SE, Klein R, Surawicz TS. The wisconsin epidemiologic study of diabetic retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology 1991;98:1261-5.  Back to cited text no. 21
Chew EY, Klein ML, Ferris FL 3rd, Remaley NA, Murphy RP, Chantry K, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996;114:1079-84.  Back to cited text no. 22
Rema M, Srivastava BK, Anitha B, Deepa R, Mohan V. Association of serum lipids with diabetic retinopathy in urban South Indians – The Chennai urban rural epidemiology study (CURES) eye study-2. Diabet Med 2006;23:1029-36.  Back to cited text no. 23
Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998;317:703-13.  Back to cited text no. 24
Rani PK, Raman R, Gupta A, Pal SS, Kulothungan V, Sharma T, et al. Albuminuria and diabetic retinopathy in type 2 diabetes mellitus Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetic study (SN-DREAMS, report 12). Diabetol Metab Syndr 2011;3:9.  Back to cited text no. 25
Pradeepa R, Anjana RM, Unnikrishnan R, Ganesan A, Mohan V, Rema M, et al. Risk factors for microvascular complications of diabetes among South Indian subjects with type 2 diabetes – The Chennai urban rural epidemiology study (CURES) eye study-5. Diabetes Technol Ther 2010;12:755-61.  Back to cited text no. 26
Rosenson RS, Fioretto P, Dodson PM. Does microvascular disease predict macrovascular events in type 2 diabetes? Atherosclerosis 2011;218:13-8.  Back to cited text no. 27
Pradeepa R, Surendar J, Indulekha K, Chella S, Anjana RM, Mohan V, et al. Relationship of diabetic retinopathy with coronary artery disease in Asian Indians with type 2 diabetes: The Chennai urban rural epidemiology study (CURES) eye study-3. Diabetes Technol Ther 2015;17:112-8.  Back to cited text no. 28
He BB, Xu M, Wei L, Gu YJ, Han JF, Liu YX, et al. Relationship between anemia and chronic complications in Chinese patients with type 2 diabetes mellitus. Arch Iran Med 2015;18:277-83.  Back to cited text no. 29
McGill JB, Bell DS. Anemia and the role of erythropoietin in diabetes. J Diabetes Complications 2006;20:262-72.  Back to cited text no. 30


  [Figure 1]

  [Table 1], [Table 2]

This article has been cited by
1 Immunomodulatory Nanosystems for Treating Inflammatory Diseases
Nadim Ahamad,Abhinanda Kar,Sourabh Mehta,Mahima Dewani,Vasanthan Ravichandran,Prateek Bhardwaj,Shivam Sharma,Rinti Banerjee
Biomaterials. 2021; : 120875
[Pubmed] | [DOI]
2 Knowledge of ocular complications of diabetes in community-based people with type 2 diabetes: The Fremantle Diabetes Study II
Jocelyn J. Drinkwater,Fred K. Chen,Wendy A. Davis,Timothy M.E. Davis
Primary Care Diabetes. 2021;
[Pubmed] | [DOI]
3 Determinants of diabetic retinopathy in Southwest Ethiopia: a facility-based case-control study
Dugasa Garoma,Hailu Merga,Desta Hiko
BMC Public Health. 2020; 20(1)
[Pubmed] | [DOI]
4 Knowledge, Awareness and Prevalence of Diabetic Retinopathy among Patients of Type 2 Diabetes Mellitus on Their First Visit to Eye Department in a Tertiary Health Care Centre - A Hospital Based Cross Sectional Study
Jasmita Satapathy,Anita Minj,Keya Chakrabarti,Priya Gupta
Journal of Evidence Based Medicine and Healthcare. 2020; 7(34): 1770
[Pubmed] | [DOI]
5 Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy
Vincent S. Tseng,Ching-Long Chen,Chang-Min Liang,Ming-Cheng Tai,Jung-Tzu Liu,Po-Yi Wu,Ming-Shan Deng,Ya-Wen Lee,Teng-Yi Huang,Yi-Hao Chen
Translational Vision Science & Technology. 2020; 9(2): 41
[Pubmed] | [DOI]
6 Prevalence and risk factors associated with diabetes retinopathy amongst type II diabetes mellitus at a primary care vision clinic in the eThekwini District, KwaZulu-Natal in 2017
Zaheera Abdool Kader,Ozayr Mahomed
African Vision and Eye Health. 2020; 79(1)
[Pubmed] | [DOI]
7 Awareness of various aspects of diabetes among people visiting tertiary eye care institute in north India
Shikha Sharma,Jayendra Jha,Abhishek Varshney,Lokesh Chauhan
Clinical Epidemiology and Global Health. 2019;
[Pubmed] | [DOI]
8 Diabetic retinopathy grade as a predictive marker of severity of cardiovascular disease and mortality: DIVERSE Study Group
Kiran Shah,Sundaram Natarajan,Milind Phadke,Onkar C Swami
International Journal of Diabetes in Developing Countries. 2019; 39(2): 291
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

   Abstract Introduction Methods Results Discussion Conclusion Article Figures Article Tables
  In this article

 Article Access Statistics
    PDF Downloaded414    
    Comments [Add]    
    Cited by others 8    

Recommend this journal