Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
Search Article 
Advanced search 
  Users Online: 667 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  
Year : 2019  |  Volume : 23  |  Issue : 1  |  Page : 97-101

Utility of a commercially available blood steroid profile in endocrine practice

1 Department of Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
2 Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bengaluru, Karnataka, India

Correspondence Address:
Vijaya Sarathi
Department of Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh - 524 003
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijem.IJEM_531_18

Rights and Permissions

Background: A blood steroid profile has recently become available on commercial basis in India. In this study, we report our initial experience with the use of steroid profile in the evaluation of disorders of sex development (DSD) and suspected cases of congenital adrenal hyperplasia (CAH) and discuss the potential scenarios in endocrine practice that may benefit from this steroid profile. Materials and Methods: The study included six subjects. Patient 1 was a 46, XX girl who presented with peripubertal virilization, patient 2 was a girl who presented with normal pubertal development, secondary amenorrhea, and virilization, and patient 3 was a girl who presented with primary amenorrhea and virilization. These three patients were suspected to have CAH but had non-diagnostic serum 17 OH-progesterone levels. Patient 4 and 5 were 46, XY reared as girls who presented with primary amenorrhea alone and primary amenorrhea and virilization, respectively, and sixth subject was a heathy volunteer. All subjects were evaluated with blood steroid profile by Liquid chromatography tandem mass spectrometry (LC-MS/MS). Results: Patient 1 and 2 were diagnosed to have 11 β-hydroxylase deficiency by using the steroid profile. Patient 3 was suspected to have CAH, but the steroid profile excluded the diagnosis and helped to confirm the diagnosis as polycystic ovary syndrome. In patient 4 and patient 5, although steroid profile ruled out the possibility of steroidogenesis defects, it did not help to reach at the specific diagnosis. Conclusion: The blood steroid profile used in this study is most useful for the diagnosis of 11 β-hydroxylase deficiency. The utility of this test is limited in the evaluation of 46, XY patients with under-virilization.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded208    
    Comments [Add]    

Recommend this journal