Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Advertise | Login 
Search Article 
Advanced search 
  Users Online: 564 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

Table of Contents
Year : 2020  |  Volume : 24  |  Issue : 2  |  Page : 160-164

Trimester-specific reference intervals for thyroid function parameters in Indian pregnant women during final phase of transition to iodine sufficiency

1 Department of Endocrinology and Metabolism, I.P.G.M.E & R, Kolkata, West Bengal, India
2 Metabolics, Biocon Limited, Bengaluru, India
3 Department of Biochemistry, KPC Medical College, Jadavpur, Kolkata, West Bengal, India
4 Department of Gynaecology and Obstetrics, I.P.G.M.E and R, Kolkata, West Bengal, India

Date of Submission18-Oct-2019
Date of Decision12-Dec-2019
Date of Acceptance16-Dec-2019
Date of Web Publication30-Apr-2020

Correspondence Address:
Sujoy Ghosh
Department of Endocrinology and Metabolism, I.P.G.M.E and R, 244 AJC Bose Road, Kolkata - 700 020, West Bengal
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijem.IJEM_561_19

Rights and Permissions

Background: Interpretation of thyroid function tests during pregnancy depends on gestational age, method, and population-specific reference intervals. Therefore, there is a worldwide trend to establish trimester-specific levels for different populations. The aim of this study was to establish a trimester-specific reference range for thyroid function parameters during pregnancy in Indian women.Materials and Methods: Thyroid function tests (TSH, FT4, TT4, TT3) of 80, 76, and 73 women at 1st, 2nd, and 3rd trimester, respectively, and 168 nonpregnant women were analyzed after exclusion of low UIC( μg/L) and anti-TPO positivity(>35 IU/ml). Urinary iodine excretion (UIC) was assessed in all. The 2.5th and 97.5th percentile values were used to determine the reference ranges for thyrotropin (TSH), free thyroxine (FT4), total thyroxine (TT4), and total triiodothyronine (TT3) for each trimester of pregnancy. Results: The reference range for TSH for first trimester was 0.19–4.34 μIU/ml, for second trimester 0.46–4.57 μIU/ml, and for third trimester 0.61–4.62 μIU/ml. The reference range during three trimesters for FT4 (ng/dl) was 0.88–1.32, 0.89–1.60, and 0.87–1.54, for total T4 (μg/dl) was 5.9–12.9, 7.4–15.2, and 7.9–14.9. In nonpregnant women, FT4 was 0.83–1.34, total T4 was 5.3–11.8, and TSH was 0.79–4.29. The mean UIC in nonpregnant women was 176 ± 15.7 μg/L suggesting iodine-sufficiency in the cohort. Conclusion: The trimester-specific TSH range in pregnant women in this study is not significantly different from nonpregnant reference range in the final phase of transition to iodine sufficiency in India.

Keywords: Pregnancy, reference interval, reference range, thyroid function tests, urinary iodine

How to cite this article:
Pramanik S, Mukhopadhyay P, Bhattacharjee K, Bhattacharjee R, Mukherjee B, Mondal SA, Bandhopadhay S, Biswas S, Chowdhury S, Ghosh S. Trimester-specific reference intervals for thyroid function parameters in Indian pregnant women during final phase of transition to iodine sufficiency. Indian J Endocr Metab 2020;24:160-4

How to cite this URL:
Pramanik S, Mukhopadhyay P, Bhattacharjee K, Bhattacharjee R, Mukherjee B, Mondal SA, Bandhopadhay S, Biswas S, Chowdhury S, Ghosh S. Trimester-specific reference intervals for thyroid function parameters in Indian pregnant women during final phase of transition to iodine sufficiency. Indian J Endocr Metab [serial online] 2020 [cited 2021 Jun 21];24:160-4. Available from: https://www.ijem.in/text.asp?2020/24/2/160/283549

   Introduction Top

Overt hypothyroidism is associated with adverse maternal and fetal outcomes.[1] International guidelines have suggested that trimester-specific normative data for pregnant women need to be generated when interpreting thyroid function test results, as these parameters are dependent on a number of factors including iodine intake and autoimmune status. However, in the absence of local/regional data, it is suggested that TSH values as advocated by the American Thyroid Association and/or the Endocrine Society may be used as rough guidance for clinical decision making.[2],[3] It is mentioned that TSH cut-off points were significantly lower during pregnancy as compared to nonpregnant states. Using these cut-offs, studies from India and elsewhere suggest a high prevalence of thyroid dysfunction during pregnancy.[4],[5],[6],[7],[8],[9]

Physiological changes associated with pregnancy such as increased serum thyroid-binding globulin (TBG), increased human chorionic gonadotropin (hCG), and increased renal iodine clearance alter thyroid function in pregnancy;[10] hence, nonpregnant cut-offs may not reflect the state of thyroid function during pregnancy appropriately. Apart from these, the transfer of iodine/thyroid hormone to fetus and increased activity of placental D3 deiodinase activity also modulate maternal thyroid hormone status. Hence, there is a need to establish population and trimester-specific references for thyroid function parameters during pregnancy.[2] Many other factors like manufacturer's methodology, ethnicity, gestational age, iodine status in the community, and selection of the reference population may also modify the reference intervals for thyroid function test reports in pregnancy.[11],[12] The previous Indian studies over the last few decades have reported different reference intervals for thyroid function parameters in pregnancy.[4],[13],[14],[15],[16],[17],[18],[19] India, like many other countries, is in a transition from iodine-deficient state to what we now believe an iodine-sufficient country. Hence, currently, the published data might not be useful in interpreting thyroid function test results during pregnancy accurately. In this background, we evaluated thyroid function test results and iodine status in pregnant women of different trimesters in an Indian cohort and attempted to establish trimester-specific normative values.

   Materials and Methods Top

This crosssectional study was conducted in the Department of Endocrinology and Metabolism and Antenatal Clinic in the Department of Obstetrics and Gynaecology at Institute of Post Graduate Medical Education and Research (IPGME & R), Kolkata over a period of 1 year. The Institutional Ethics Committee at IPGMER approved the study protocol and informed written consent was obtained from study participants.

Three hundred pregnant women (100 from each trimester) aged 18–40 years having singleton pregnancy diagnosed at 8th week of pregnancy were consecutively recruited. Two hundred nonpregnant women (sisters, close relatives, or accompanying person of the pregnant women) were also recruited as control. All patients gave history of consuming iodized salt. After enrolment, a detailed history was taken and participants were clinically examined. Those who had a personal or family history of thyroid disorder, those who were on thyroid medications or had a history of liver dysfunction were excluded. Individuals with a history of hyperemesis gravidarum ( first trimester only), having goitre 1B or more, palpable nodule were also excluded before enrolment in the cohort.

Serum thyrotropin (TSH), total thyroxin (TT4), free thyroxin (FT4), total triiodothyronine (TT3), antithyroid peroxidase antibody (anti-TPO antibody), and spot urinary iodine were measured. Subjects with the presence of anti-TPO antibody >35 IU/ml and low urinary iodine (<150 μg/L) were subsequently excluded in the recruited cohort for the analysis to establish normative reference values.

Lab methods

Serum and urine samples were immediately stored at −20°C for subsequent analysis. Serum TSH, FT4, TT4, TT3, and anti-TPO were estimated by the Chemiluminescence technique using commercially available kits from Siemens Diagnostics (Germany) with Immulite-1000 analyzer. The analytical sensitivity and total precision values for TSH, FT4, TT4, and TT3 assays were 0.01 μIU/ml and 2.2%, 0.35 ng/dl and 2.7%, 0.4 μg/dl and 2.5%, and 35ng/dl and 2.2%, respectively. The laboratory reference ranges were TSH (0.4–4 μIU/ml), FT4 (0.8–1.9 ng/dl), TT4 (4.5–12 μg/dl), TT3 (81–178 ng/dl), and the interassay coefficients of variation (CV) for the assays were 8.9%, 5.5%, 6.7%, and 9.3%, respectively. The corresponding values for interassay CV, total precision, and analytical sensitivity for anti-TPO were 10.5%, 7.6%, and 7 IU/ml. Anti-TPO Ab was considered elevated if levels were >35 IU/ml. Urinary iodine concentration (UIC) was determined in all participants by the ammonium persulfate method based on the Sandell–Kolthoff reaction. The interassay CV for UIC was 4%.[20] The UIC  μg/L in pregnant women was taken as evidence of insufficient iodine intake.[21]

Statistical analysis

The data was analyzed by SPSS (version 21.0; SPSS, Inc. Chicago, IL, USA) using appropriate statistical tests. For descriptive statistics, frequencies, percentages, mean with standard deviations (SD), and median with interquartile range (IQR) of different variables were calculated. TSH, FT4, TT4, and TT3 data in reference population were calculated and expressed as 2.5th and 97.5th percentile to ascertain desired reference range. Independent sample t-test was used to compare the means of two separate sets. A P value threshold ɘ.05 was considered as statistically significant.

   Results Top

Three hundred pregnant women (100 women from each trimester) and 200 nonpregnant women were recruited initially. The distribution of subjects after exclusion of subjects with positive anti-TPO antibody and low UIC (<150 μg/L) was 80, 76, and 73 in 1st, 2nd, and 3rd trimester respectively. In the control group, 168 subjects were eligible for comparative analysis. [Figure 1] demonstrates the flow chart for screening the subjects included in the study. All data except TSH were distributed normally as analyzed by Kolmogorov–Smirnov test.
Figure 1: Flow chart of subjects analyzed

Click here to view

Mean age of pregnant women was 24.6 ± 3.6 years (n = 229) and for the nonpregnant women it was 25.3 ± 3.8 years. About 42.3% (97/229) were multigravida and 57.7% (132/229) were primigravida. The mean (±SD) UIC in nonpregnant women (n = 200) was 176 ± 15.7 μg/L reflecting a state of iodine sufficiency in the cohort analyzed. UIC (μg/L) in different trimester was: 205 ± 16.9, 176 ± 14.9, and 182 ± 16.7, respectively. These baseline parameters are presented in [Table 1].
Table 1: Baseline characteristics of the participants in this study

Click here to view

In non-pregnant women, FT4 was 0.83–1.34 ng/dl, total T4 was 5.3–11.8 μg/dl, and TSH was 0.79–4.29 μIU/ml. The trimester-specific reference interval of thyroid function tests (2.5th and 97.5th percentile) in pregnancy and in nonpregnant women, e.g., TSH, free T4, total T4, and total T3 in pregnant women in different trimesters and in nonpregnant women, is presented in [Table 2].
Table 2: Trimesterspecific reference interval (2.5th and 97.5th percentile) of thyroid function tests in pregnancy and in non-pregnant women

Click here to view

Mean total T4 and total T3 levels were higher during week 12 to week 18, as compared to values in weeks 6–9 [for total T4 (μg/dl): 12.09 ± 1.57 vs 9.69 ± 2.45 (P < 0.001) and for total T3(ng/dl): 183 ± 25.5 vs145 ± 27.7 (P < 0.001)]. However, the mean total T4 and total T3 levels during week 12 to 18 weeks were not statistically different from values in 18–40 weeks [for total T4 (μg/dl): 12.09 ± 1.57 vs 11.83 ± 1.44 (P = NS) and for total T3(ng/dl): 183 ± 25.5 vs 172 ± 35 (P < 0.001)]. Unlike T4, free T4 did not increase; on the contrary, the levels decreased in 2nd trimester and were highly variable all through pregnancy. TSH trend showed a gradual rise as the pregnancy progressed, but did not reach statistical significance.

   Discussion Top

Published data from studies on thyroid function in pregnancy are not similar. It is possible that the differences in TSH reference range among the studies are due to differing iodine health status in different communities. Urinary iodine excretion reflects iodine status in the population and hence may not reflect deficiency at the individual level.[2] We postulate that our population may still be in the possible final stages of transition into the state of iodine sufficiency.[22] In this background, our study may represent the most recent reference range of thyroid function parameters in Indian pregnant women. The results are in keeping with the ATA 2017 guidelines[2] and relatively similar to that suggested by Rajput et al.,[18] but differ from the previous Indian data by Marwah et al.[13] Lower limit of TSH in 1st trimester is similar to ATA 2017 guidelines and Jebasingh et al.,[15] but it is lower as compared to other Indian studies. The previous study from Kolkata used enzyme-linked immunosorbent assay (ELISA) technique for measurement of TFTs. However, this method is seldom used nowadays.[19] Trimester-specific TSH values found in different Indian studies are depicted in [Table 3].
Table 3: Trimester-specific TSH values found in different Indian studies

Click here to view

There is no iodine deficiency in the analyzed cohort. As India is in a transition state of iodine sufficiency, ongoing improvement of iodine health may explain decreasing TSH reference range from the previous Indian data by Marwah et al., in which iodine status was not measured.[13] The study by Rajput et al. also did not check for maternal iodine status and it assumed Haryana to be an iodine sufficient area of India.[18] Recent data from Delhi and Nagpur did not report even a single case of iodine deficiency in pregnant women.[14],[17] The median urinary iodine concentration of 150–200 μg/l during each trimester was reported in the study by Sekhri et al.[14] The present study also suggests that further improvement in iodine health is unlikely to change TSH reference range. Shi et al.[23] recently demonstrated a U-shaped relationship between urinary iodine concentrations and antibody positivity among pregnant women. We could not reproduce the same.

The study has some limitations. The sample size in our study was small. In addition, we did not follow up the same patients in all 3 trimesters as Sekhri et al., which intuitively sounds better to assess changes in thyroid function parameters during pregnancy. However, the study by Zhang et al. suggests that there is no significant difference was found between a self-sequential longitudinal reference interval and a cross-sectional reference interval.[24]

   Conclusion Top

This study establishes the trimester-specific TSH, FT4, total T4, and total T3 hormone ranges in pregnant women from India during the final stage of transition to iodine sufficiency. However, the TSH levels of these patients were not different from those with optimal iodine status, implying that further correction of the same is unlikely to alter TSH levels.

Declaration of patient consent

The authors certify that they have obtained all appropriate participant consent forms. In the form, the participants have given their consent for clinical information to be reported in the journal. The participants understand that their names will not be published and due efforts will be made to conceal their identity.

Financial support and sponsorship

This study was funded by Endocrine Society of Bengal, a state affiliate to Endocrine Society of India.

Conflicts of interest

There are no conflicts of interest.

   References Top

Abalovich M, Gutierrez S, Alcaraz G, Maccallini G, Garcia A, Levalle O. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002;12:63-8.  Back to cited text no. 1
Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017;27:315-89.  Back to cited text no. 2
De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012;97:2543-65.  Back to cited text no. 3
Dhanwal DK, Prasad S, Agarwal AK, Dixit V, Banerjee AK. High prevalence of subclinical hypothyroidism during first trimester of pregnancy in North India. Indian J Endocr Metab 2013;17:281-4.  Back to cited text no. 4
[PUBMED]  [Full text]  
Bocos-Terraz JP, Izquierdo-Álvarez S, Bancalero-Flores JL, Álvarez-Lahuerta R, Aznar-Sauca A, Real-López E, et al. Thyroid hormones according to gestational age in pregnant Spanish women. BMC Res Notes 2009;2:237-42.  Back to cited text no. 5
Karakosta P, Chatzi L, Bagkeris E, Daraki V, Alegakis D, Castanas E, et al. First- and second-trimester reference intervals for thyroid hormones during pregnancy in “Rhea” mother-child cohort, crete, Greece. J Thyroid Res 2011;49:71-83.  Back to cited text no. 6
Yan YQ, Dong ZL, Dong L, Wang FR, Yang XM, Jin XY, et al. Trimester and method-specific reference intervals for thyroid tests in pregnant Chinese women: Methodology, euthyroid definition and iodine status can influence the setting of reference intervals. Clin Endocrinol (Oxf) 2011;74:262-9.  Back to cited text no. 7
Mehran L, Amouzegar A, Delshad H, Askari S, Hedayati M, Amirshekari G, et al. Trimester-specific reference ranges for thyroid hormones in Iranian pregnant women. J Thyroid Res 2013;2013:651517.  Back to cited text no. 8
Li C, Shan Z, Mao J, Wang W, Xie X, Zhou W, et al. Assessment of thyroid function during first-trimester pregnancy: What is the rational upper limit of serum TSH during the first trimester in Chinese pregnant women? J Clin Endocrinol Metab 2014;99:73-9.  Back to cited text no. 9
Glinoer D. The regulation of thyroid function in pregnancy: Pathways of endocrine adaptation from physiology to pathology. Endocr Rev 1997;18:404-33.  Back to cited text no. 10
Roti E, Gardini E, Minelli R, Bianconi L, Flisi M. Thyroid function evaluation by different commercially available free thyroid hormone measurement kits in term pregnant women and their newborns. J Endocrinol Invest 1991;14:1-9.  Back to cited text no. 11
La'ulu SL, Roberts WL. Second-trimester reference intervals for thyroid tests: The role of ethnicity. Clin Chem 2007;53:1658-64.  Back to cited text no. 12
Marwah RK, Chopra S, Gopalakrishnan S, Sharma B, Kanwar RS, Sastry S, et al. Establishment of reference range for thyroid hormones in normal pregnant Indian women. Int J Obstet Gynecol 2008;115:602-6.  Back to cited text no. 13
Sekhri T, Juhi JA, Wilfred R, Kanwar RS, Sethi J, Bhadra K, et al. Trimester specific reference intervals for thyroid function tests in normal Indian pregnant women. Indian J Endocr Metab 2016;20:101-7.  Back to cited text no. 14
[PUBMED]  [Full text]  
Jebasingh FK, Salam R, Meetei TL, Singh PT, Singh NN, Prasad L. Reference intervals in evaluation of maternal thyroid function of Manipuri women. Indian J Endocr Metab 2016;20:167-70.  Back to cited text no. 15
[PUBMED]  [Full text]  
Deshwal VK, Yadav A, Gogoi JB. Comparison of FT3, FT4 and TSH levels in pregnant women in Dehradun. J Acad Ind Res 2013;2:239-44.  Back to cited text no. 16
Mankar J, Sahasrabuddhe A, Pitale S. Trimester specific ranges for thyroid hormones in normal pregnancy. Thyroid Res Pract 2016;13:106-9.  Back to cited text no. 17
  [Full text]  
Rajput R, Singh B, Goel V, Verma A, Seth S, Nanda S. Trimester-specific reference interval for thyroid hormones during pregnancy at a tertiary care hospital in Haryana, India. Indian J Endocr Metab 16;20:810-5.  Back to cited text no. 18
Maji R, Nath S, Lahiri S, Saha Das M, Bhattacharyya AR, Das HN. Establishment of trimester-specific reference intervals of serum TSH and fT4 in a pregnant Indian population at North Kolkata. Indian J Clin Biochem 2014;29:167-73.  Back to cited text no. 19
Ohashi T, Yamaki M, Pandav CS, Karmarkar MG, Irie M. Simple microplate method for determination of urinary iodine. Clin Chem 2000;46:529-36.  Back to cited text no. 20
World Health Organization. Urinary iodine concentrations for determining iodine status in populations. Available from: https://apps.who.int/iris/bitstream/handle/10665/85972/WHO_NMH_NHD_EPG_13.1_eng.pdf;jsessionid=7199D37A5DDA64E474F78CB14 F8A 0904?sequence=1. [Last accessed on 2019 Aug 12].  Back to cited text no. 21
Chandwani HR, Shroff BD. Prevalence of goiter and urinary iodine status in six-twelve-year-old rural primary school children of Bharuch District, Gujarat, India. Int J Prev Med 2012;3:54-9.  Back to cited text no. 22
Shi X, Han C, Li C, Mao J, Wang W, Xie X, et al. Optimal and safe upper limits of iodine intake for early pregnancy in iodine-sufficient regions: A cross-sectional study of 7190 pregnant women in China. J Clin Endocrinol Metab 2015;100:1630-8.  Back to cited text no. 23
Zhang X, Yao B, Li C, Mao J, Wang W, Xie X, et al. Reference intervals of thyroid function during pregnancy: Self-sequential longitudinal study versus cross-sectional study. Thyroid 2016;26:1786-93.  Back to cited text no. 24
Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, et al. American thyroid association taskforce on thyroid disease during pregnancy and postpartum 2011 guidelines of the American thyroid association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21:1081-125.  Back to cited text no. 25


  [Figure 1]

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Total T4 rise in pregnancy: a relook?
Subhodip Pramanik,Pradip Mukhopadhyay,Sujoy Ghosh
Thyroid Research. 2020; 13(1)
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

   Abstract Introduction Materials and Me... Results Discussion Conclusion Article Figures Article Tables
  In this article

 Article Access Statistics
    PDF Downloaded166    
    Comments [Add]    
    Cited by others 1    

Recommend this journal